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Abstract— Safety assessment is one of the main challenges
in deploying Automated Driving Systems (ADSs) on public
roads. Scenario-based assessment is a common method to test
such systems. Such scenario-based testing involves modeling
the ADSs in a simulation environment to examine and evaluate
their safety. Due to the complexity and uncertainty of the
driving environment, the number of possible scenarios that
ADSs can encounter is virtually infinite and there is a need
for reduction of possible scenarios to a finite set. This research
presents a generic framework to formulate a dissimilarity
metric, which focuses on the comparison of driving scenarios
on their most critical scenes, to reduce the number of possible
scenarios into a finite and computationally manageable set.

I. INTRODUCTION

Autonomous vehicles are undergoing intensive research
and development, with plans for deployment on public roads.
Amidst this progress, a significant challenge faced by the
automotive industry revolves around the verification and
validation (V&V) of Automated Driving Systems (ADSs).
As automation levels increase, the traditional approach of
evaluating vehicles through extensive real-world driving use
cases becomes impractical and insufficient for ADSs assess-
ment [1]. With the system taking on more driving functions
and reducing driver dependency, it becomes crucial to gauge
the system’s intelligence in responding to diverse driving
scenarios. These scenarios include a variety of possibilities,
such as traffic congestion, accidents, and vehicle cut-ins.

ADSs are complex systems involving various sub-systems
working together to improve overall safety, optimize energy
usage, and prevent traffic congestion through connectivity
and automation. A minimum number of expressive tests
should be selected to verify these functionalities. These
expressive tests should contain diverse challenging scenarios,
thoroughly assessing the system’s capabilities and responses
in real-world-like conditions. One way to run these expres-
sive tests is by scenario-based testing.

Due to the complexity and uncertainty of the driving
environment, the number of such scenarios that ADSs may
encounter is virtually infinite [2]. The International Orga-
nization for Standardization (ISO) introduced the ISO/PAS
21448 [3], which focuses on safety-relevant hazards that a
vehicle may induce. These specifications introduce Safety
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of the Intended Functionality (SOTIF), which focuses on
scenario-based testing for safety assurance.

Many researchers have explored techniques to generate
and categorize scenarios automatically to find such safety-
critical scenarios [4]–[7]. However, to reduce the number of
scenarios to be tested and to maximize Operational Design
Domain (ODD) coverage, it is necessary to select scenarios
that evaluate ADSs performance in diverse conditions. To
this end, there is a need for a quantitative dissimilarity metric
to compare scenarios, which can further be used to quantify
scenario diversity and eliminate redundancies.

To formulate a quantitative measure for assessing the
similarity/dissimilarity between two driving scenarios, it is
first important to define the notion of a driving scenario.
Ulbrich et al. [8] defined a scene, a scenario, and relevant
terminologies in their research. A scene is a snapshot of the
environment at any given instant and a scenario describes
the temporal development in a sequence of scenes. These
interpretations are adopted by most of the studies that follow.

Next, it is crucial to understand what is characterized as
similar/dissimilar between driving scenarios. As a human
observer, one can consider multiple features to call a set
of driving scenarios similar. These features could include
(but are not limited to) the position, orientation, speed, and
acceleration of vehicles. At this stage, given any two driving
scenarios, the choice for characterizing them as similar be-
comes a subjective matter based on the features considered.
In addition, including as many features as possible increases
the problem’s complexity significantly.

To address this challenge, researchers investigated general
dissimilarity/trajectory metrics that differentiate between sce-
narios based on a set of features. Su et al. [9], Sousa et al.
[10], and Tao et al. [11] present surveys on existing measures
of similarity in literature. The most commonly used measures
depending on the application are Euclidean distance, Lock-
step Euclidean distance, and Dynamic Time Warping.

Apart from the abovementioned measures, a few re-
searchers propose new measures that aim at scenario dis-
similarity. Kerber et al. [12] introduce an approach for sce-
nario clustering through spatiotemporal filtering of driving
scenarios within an available driving database. Bernard et al.
[13] presented a trajectory clustering approach for scenario-
based testing of ADSs. The concept of scenario dissimilarity
in novelty assessment is introduced in [14]. The author first
represents a scene by each vehicle’s position and orienta-



tion, distance, and two angles to address relative positions
and orientations. The scenario dissimilarity is obtained by
computing the average distance between the corresponding
scenes of each scenario using the Euclidean distance.

The primary emphasis of the approaches by [12]–[14] is
on computing dissimilarity based on a scenario trajectory-
level formulation. From a safety standpoint, the most crucial
information in a scenario is found near the most critical
scenes. Hence, a key drawback in existing methods is relying
on the full trajectory to calculate dissimilarity. The devel-
opment of the scenario trajectory, while important, is not
as relevant as the safety-critical incidents for the selection
of scenarios that provide diverse challenges for the ADSs.
Consider a scenario: a vehicle approaching an intersection,
encountering a previously occluded pedestrian. Safety cru-
cially depends on the vehicle’s and pedestrian’s proximity,
emphasizing their positions and velocities. However, present
methods analyze entire trajectories, instead of safety’s focal
points.

To address this issue, we suggest a novel approach to com-
pute dissimilarity, focused specifically on the most safety-
relevant scene. To the best of the authors’ knowledge, no
current methods specifically concentrate on formulating a
generic dissimilarity metric based on the most safety-relevant
scene. In this research, we propose a method for computing
scenario dissimilarity which prioritizes the most safety-
critical scene, while accounting for the complete trajectory
information of involved actors.

II. METRIC FOUNDATION

This section illustrates the methodology followed to model
a dynamical system and define a scenario as a trajectory of
such a system. It further discusses the concept of dissimilar-
ity and the factors to consider for formulating a measure to
differentiate between driving scenarios.

A. Dissimilarity Metric

Let a concrete scenario be mathematically defined as a
temporal trajectory of certain Variables of Interest (VOIs),
denoted as ζ ∈ B, where B is the set of allowable concrete
scenarios. The dissimilarity indicator then is a function

d(ζ1, ζ2) : B×B → R+
0 , (1)

where ζ1, ζ2 are two concrete scenarios in B1. Depending
on the application and requirements, the complete trajectories
of the VOIs, or their values at certain relevant time instants
could be used for computing the dissimilarity between sce-
narios. Additionally, for easier interpretation, we scale the
values of d to lie in the closed interval [0, 1], with low values
representing lower values of dissimilarity. Given this general
definition of dissimilarity, the following subsections aim to

1In general, the dissimilarity indicator may or may not satisfy all
the properties of a mathematical metric, which include non-negativity,
symmetry, triangle inequality, and separation [15].
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Fig. 1. Modeled System of Interest (SOI) with scenario trajectories for all
actors and division of the SOI into grid cells (mesh).

develop a dissimilarity metric, illustrated by an example
system.

B. Modelling Traffic Systems

To model a traffic system incorporating driving scenar-
ios, fundamental parameters such as the road configuration,
number of actors (vehicles, pedestrians, scenery elements),
and a region boundary must be selected. For this work, an
intersection road layout has been modeled as an example.
The terms required to define such a system are listed below:

1) Scenery: The boundary box considered is a square with
50 m side length as shown in Fig. 1. The width of each
lane is 3.75 m based on standard road dimensions.

2) Actors: The vehicles and the pedestrians, modeled as
ellipses and circles, respectively, to have an approxi-
mate mathematical representation in 2D, represent the
actors.

3) Variables of Interest (VOIs): These include the posi-
tions, orientations, and velocities of the actors within
the boundary box. They are denoted by (xv, yv, θv)i,
(vxv, vyv)i for vehicle i (where i ∈ {1, 2}), and
(xp, yp, θp), (vxp, vyp) for the pedestrian.

4) Constraints and assumptions:
a) The actors are constrained to move within the

boundary box.
i) The vehicles are modeled to move only along

the road and not anywhere else in the scenery.
ii) The pedestrian is free to move anywhere

within the boundary box.
b) The actors, modeled as ellipses and circles, can-

not overlap at any time in the scenario.
A key point to note at this stage is that this system is just

an example to understand what could be considered similar



between two scenario trajectories. The approach could be
extended to other traffic systems as well.

In the example considered, the features are limited to
the positions and orientation, which are derived based on
the velocity of the actors. To differentiate between two
scenarios within the modeled system, computing a difference
between position and orientation should fully represent the
dissimilarity.

C. Abstraction with a Mesh grid

The dissimilarity metric focuses mainly on the scene
posing the greatest safety risk. However, it is important not
to disregard the trajectory information leading to this critical
scene. To address differences in actor trajectories, the system
is first abstracted into a mesh grid, dividing it into distinct
areas. Comparing the sequence of visited grid cells offers
a high-level understanding of actor motion, enabling swift
scenario comparisons to determine if further detailed analysis
is necessary. If actor motion within the mesh grid appears
similar across scenarios, a closer comparison of the safety-
critical scene can be performed.

A sample method for meshing the modeled System of
Interest (SOI) is shown in Fig. 1, thus dividing the road
network into twelve grid cells. This meshing of the scenario
space adds the first level of dissimilarity: Two scenarios
where the actor’s trajectories lay on different grid cells
can already be considered distinct. There can be multiple
ways in which the road network in the modeled SOI can
be divided into meshes. Selecting a particular mesh grid is
application-specific, like the choice of features for evaluating
dissimilarity. The mesh grid selected will therefore be unique
to the designer. This paper provides one possible set of
guidelines to the designer to choose a mesh grid for any
road network in an SOI. These guidelines are:

1) The width of each grid cell is equal to the lane width
under consideration.

2) Each lane is one grid cell until:
a) The end of the lane, as per lane markings.
b) The lane splits into two to more lanes, where each

split lane is a new grid cell.
c) The lane joins a second lane or a junction.

For example, lanes merging into a highway or
intersection.

d) A pedestrian/bicycle crossing splits a lane. In
this case, it divides the lane into three grid cells,
including the crossing.

3) The presence of objects in scenery (such as traffic
lights and signboards) splits a lane into two grid cells.

In formulating these guidelines, a mindful approach is taken
to accommodate the potential inclusion of real-world road
layouts, lane markings, and scenery objects.

D. Dissimilarity at a Scene

Scenarios represent variable trajectories over time, where
the entire trajectory holds significance. However, the critical

behavior of the ADS arises from the combination of the
various external factors at a certain instant. This particular
instant in the scenario is crucial for evaluating ADS perfor-
mance. Therefore, to extract safety-relevant information from
a scenario, we propose to compute the dissimilarity based on
the VOIs at that particular instant.

From a broad perspective, the utmost critical scenario
arises from the combination of collision proximity and
severity. This combination of collision proximity and severity
can be measured in terms of a criticality metric, which
can then be used to identify the most critical scene in the
scenario. Thus, in this study, the dissimilarity between any
two scenarios is evaluated based on differences at the most
critical scenes of each scenario. This simplification for the
dissimilarity assessment reduces the problem’s domain from
trajectory analysis to point-level analysis.

It should be noted here that criticality and dissimilarity
are different. It is also important to note that the choice
of the criticality metric, and the features for computing
dissimilarity heavily influence the values of dissimilarity.
For example, while comparing scenarios for testing a motion
planning system, important features could be the locations
and velocities of all actors at the instant of criticality. In
contrast, if the goal is to evaluate the perception system,
features such as vehicle color or size might also be important.
Based on the requirements of the application, the criticality
metric and the features for dissimilarity metric computation
can be chosen in a manner that incorporates all the relevant
information for the comparison of scenarios for the specific
application.

E. Pre-conditions for the dissimilarity metric

Based on the work consolidated so far, considering the
modeling approach and the definition of the mesh grid, the
key hypotheses and pre-conditions for a dissimilarity metric
are outlined below:

1) Two scenarios can only be compared if they lie within
the same B. Scenarios in a different B are already
considered 100% dissimilar.

2) Two scenarios can only be compared if all the actors’
trajectories lay on the same sequence of grid cells.
If the sequence of grid cells differs between two
scenarios, they are considered 100% dissimilar.

3) The difference between the two scenarios will be
evaluated by comparing features at the most critical
scene in each scenario and not the entire scenario.

These pre-conditions define the boundaries for the dissim-
ilarity metric definition. Building upon these fundamental
concepts, the subsequent section explains how the dissimi-
larity metric calculation is performed.

III. METRIC FORMULATION

To evaluate the dissimilarity d between two driving scenar-
ios, the difference in the VOIs is to be evaluated at the most



critical scene of the scenario. In this study, the minimum
distance between actors across the entire scenario serves as
the measure of criticality. Focusing on minimum distance is
key for criticality assessment as it directly signifies imminent
collision risk. The VOIs at the instant of maximum criticality
are chosen to calculate dissimilarity. These variables form the
features used for comparison of scenarios and are represented
by the position (xi, yi) and orientation (θi) of the actors in
the global frame of reference, where i ∈ {v, p}.

This section introduces two different types of features
to compute the dissimilarity, namely discrete and continu-
ous, based on the nature of the variables used to compute
them. Discrete features have distinct, unordered values and
can be categorized into groups. An example of a discrete
feature could be the actor type which collides with the
ego vehicle. These features, if different between scenarios,
lead to completely different scenarios. Continuous features
represent an infinite number of values within a defined range.
These features represent the precision of any variable being
measured, for example, the values of positions or velocities
of actors at the instant of maximum criticality.

A. Discrete and Continuous Features

Consider two scenarios, represented by these VOIs
(xv, yv, θv)i where i ∈ {1, 2}, and (xp, yp, θp), as inputs to
compute the dissimilarity. Based on the positions returned
at the event of maximum criticality, the minimum distance
can occur between only two actors in the scenario. In this
case, it can be with the second vehicle or the pedestrian.
This understanding introduces the first discrete feature: Actor
type at maximum criticality denoted by ATc. This feature
belongs to a finite set of all combinations of actor interac-
tions concerning the test (ego) vehicle. This finite set for
the system considered is then: {‘Vehicle-Vehicle’, ‘Vehicle-
Pedestrian’}. The difference between ATc of two scenarios
is then calculated as:

∆ATc =

{
0 if (ATc)1 == (ATc)2

1 otherwise.
(2)

Introducing the discrete features helps in adding a level of
abstraction. Logically, two scenarios that result in ∆ATc

returning 1 from (2) indicate dissimilarity d = 1. Both
scenarios are hence important for testing and need to be
selected. If ∆ATc returns 0, further analysis is needed for
dissimilarity.

Another discrete feature, based on the location of the test
vehicle in the mesh grid, is also introduced: Critical grid
cell number denoted by GCc. The GCc for each scenario is
chosen based on the point of the maximum criticality on the
ego vehicle. The difference in the grid cell number between
the two scenarios, at maximum criticality, is calculated as:

∆GCc =

{
0 if (GCc)1 == (GCc)2

1 otherwise.
(3)

Vehicle 1
(Ego

vehicle)

Vehicle 2Point of
maximum
criticality
(minimum
distance)

Fig. 2. Representation of Relative heading θrel and angles at maximum crit-
icality in the local frame of reference ϕc. Counter-clockwise measurement
is considered positive, and clockwise measurement is considered negative.

This discrete feature implicitly considers the differences in
the positions of the actors: (xv, yv)1 with respect to (xv, yv)2
or (xp, yp), based on the grid cell where they lie. Similar
to the actor type at minimum distance, (3) returns 1 if the
grid cell of the maximum criticality point with respect to
the vehicle-under-test between the two scenarios is different,
thus reflecting dissimilarity d = 1. If ∆GCc returns 0, further
analysis is needed for dissimilarity. Based on the desired
application and the intent of the designer for the dissimilarity
metric, more discrete features can be added at this stage.

Next, the notion of continuous features is introduced for
the angles obtained at maximum criticality. Two angles
are derived at the point of minimum distance: the relative
heading angle θrel and the potential collision angle ϕc in
the test vehicle frame. The physical representation of the
two angles in a critical scene is shown in Fig. 2. These
angles are pivotal in differentiating between critical scenarios
due to their influence on the outcome. The θrel defines the
orientation difference between two actors, which determines
how they approach each other. The ϕc indicates the location
of the other vehicle in the ego-vehicle frame and provides
insight into the potential severity of collision as well as the
responsibility of the ego vehicle in the incident.

Multiple methods exist for computing the difference be-
tween angles. One possible way to achieve this is using the
cosine similarity index [16]. The cosine similarity returns
values in the range [0, 2], which can be scaled to [0, 1] by
dividing the result by two. The cosine difference of the
angles θrel and ϕc between two scenarios, denoted by ∆θ

and ∆ϕ respectively, is then calculated as:

∆θ = [1− cos(θrel1 − θrel2)]/2 (4a)

∆ϕ = [1− cos(ϕc1 − ϕc2)]/2. (4b)

It is important to note that using cosine similarity is only
one of the possible choices to compute dissimilarity. Using
other comparison metrics will result in different values.



B. Dissimilarity Calculation

Having introduced two discrete and two continuous fea-
tures, the next step involves mapping them into a single value
representing the dissimilarity. The mapping is done at two
levels because comparing discrete features leads to values
of either 0 or 1, and while comparing continuous features
leads to values between 0 and 1. It is important to note that
the continuous features are only considered for dissimilarity
if the discrete features are the same between scenarios. This
step aids in a quick estimation of the dissimilarity with higher
priority given to discrete features over continuous features.

The continuous features must first be mapped into a single
value, and then they can combined with the discrete features
to calculate the value of dissimilarity. In this research, the
continuous features ∆θ and ∆ϕ are combined to a single
value σc by averaging, as:

σc = (∆θ +∆ϕ)/2. (5)

Once the continuous features are combined into σc, the next
step is to combine them with the discrete features while
tending to the requirement of considering the combined
continuous value only if all discrete features hold the value 0.
However, multiple methods exist to satisfy this requirement,
and the authors wish to highlight one approach. A method
that satisfies the requirement for top-level mapping is the
maximum function, applied over all the discrete and the
combined continuous features. It is given by:

d(Scenario1, Scenario2) = max(∆ATc,∆GCc, σc). (6)

The final result from the maximum function thus represents
the dissimilarity between a set of scenarios. Implicitly con-
sidered is the highest level of dissimilarity, where the same
sequence of mesh grid cells is essential for comparison;
otherwise, it results in d = 1.

IV. METRIC IMPLEMENTATION

To showcase the formulated dissimilarity metric and eval-
uate its effectiveness, an exemplary computation of dissim-
ilarity using sample scenario trajectories is done within the
modeled system and discussed in this section. Additionally,
the usage of this metric to categorize scenarios using a
clustering algorithm is also performed and analyzed.

A. Dissimilarity for the modeled system

In the modeled example (see Section II-B), with the
intersection type of road junction, an example of the possible
paths for the three actors is depicted in Fig. 1. The ego vehi-
cle starts its trajectory from the left side of the intersection,
followed by executing a left turn. The grid cell sequence
that forms the vehicle path 1 is (2, 5, 9, 8, 7). The second
vehicle (vehicle 2) also makes a left turn, but it initiates
the maneuver from the opposite lane and the opposing side
of the ego-vehicle. For vehicle 2, the grid cell sequence
of the path is (11, 8, 4, 5, 6). Additionally, the pedestrian’s

simulated movement involves crossing the road and passing
through grid cells 7 and 3. The initial velocities of the
actors are defined as parameters, which can be varied to
obtain different concrete scenarios. It is assumed that the
actors move with a constant speed along the defined path
throughout the entire scenario.

Different initial velocities for the actors within the con-
sidered grid cell sequence can result in different collision
types. The different collision types can occur in grid cells
{2, 5, 7, 8, 9} (the ego vehicle drives through these cells) with
varying collision angles. As per the simplifications made in
Section III, the scenarios with these collision modes can be
depicted with two discrete and two continuous variables:
ATc, GCc, θrel and ϕc. Using the dissimilarity metric pro-
posed, for example, between 2 collision modes with the same
ATc and GCc, and different continuous variables (θrel, ϕc) =

(−90, 40)° and (θrel, ϕc) = (−90,−30)°, we get ∆θ = 0

and ∆ϕ = 0.3289 from (4). Then the combined value of
dissimilarity is computed as 0.1645 from (6).

The example considered represents a frontal region of
the minimum distance for the test vehicle, indicating a
possibility of a frontal collision. It can be realized with the
angle ϕc having values of 40 and −30 between scenarios,
which indicates the point of maximum criticality being on
either side of the ego vehicle. Therefore, the calculation
of dissimilarity with a large difference in ϕc still leads to
a low value of 0.1645, thereby representing a small value
of dissimilarity between scenarios with similar maximum
criticality conditions.

It is important to now evaluate if the formulated dissimilar-
ity indicator satisfies the properties of a metric. As explained
in [17], the properties of a metric are:

1) Non-negativity: The dissimilarity metric is formulated
to lie within the [0, 1] bounds. Consequently, the dis-
similarity between any two scenarios will be a non-
negative real number, thereby satisfying this axiom.

2) Identity of indiscernibles: This axiom is satisfied when
the dissimilarity between two scenarios is zero, if and
only if both scenarios are exactly the same. Here, the
dissimilarity d between the two scenarios will be 0 if:

(ATc)1 = (ATc)2, (GCc)1 = (GCc)2

θrel1 = θrel2, ϕc1 = ϕc2
(7)

In contrast, dissimilarity d = 0 implies:

∆ATc = 0, ∆GCc = 0, ∆θ = 0, ∆ϕ = 0 (8)

Variables ∆ATc and ∆GCc can only result in 0 if the
first two conditions in (7) are satisfied. On the other
hand, the variables ∆θ and ∆ϕ can be 0 when:

θrel1 = θrel2 OR θrel1 = θrel2 ± 2π

ϕc1 = ϕc2 OR ϕc1 = ϕc2 ± 2π
(9)

Since the angles θrel and ϕc belong to the range
[−π, π], ∆θ and ∆ϕ are equal to 0 at the limits of the



angle range. Therefore, the identity axiom is satisfied
for the current formulation of dissimilarity.

3) Symmetry: This axiom is satisfied when the dissimi-
larity between two scenarios fulfills the following:

d(ζ1, ζ2) = d(ζ2, ζ1) (10)

The cosine similarity formulation in ∆θ and ∆ϕ for
dissimilarity ensures that this axiom is satisfied.

4) Triangle Property: To analyze if the triangle property is
satisfied, consider three scenarios ζ1, ζ2, and ζ3 having
a collision between the two vehicles at grid cell 5 from
Fig. 1. Let the continuous variables for these scenarios
have the following values:

ζ1 : (θrel, ϕc) = (−90°, 0°)

ζ2 : (θrel, ϕc) = (−90°, 45°)

ζ3 : (θrel, ϕc) = (−90°, 90°)

(11)

Applying the dissimilarity metric to these scenarios
results in d(ζ1, ζ2) = 0.0732, d(ζ2, ζ3) = 0.0732, and
d(ζ1, ζ3) = 0.25 This implies that:

d(ζ1, ζ2) + d(ζ2, ζ3) ≱ d(ζ1, ζ3) (12)

Therefore, the formulated dissimilarity metric does not
satisfy the triangle property.

The type of metric satisfying the first three axioms and not
satisfying the triangle property is a Semimetric [17]. The
formulated dissimilarity indicator is therefore a Semimetric.

B. Clustering scenarios using dissimilarity

The purpose of the dissimilarity metric is to ensure diver-
sity by preventing redundant scenarios. In this sub-section,
an example is provided to demonstrate the application of
the dissimilarity semimetric for clustering a set of scenarios
using a clustering algorithm. The interaction of the ego
vehicle with the pedestrian is completely different from the
second vehicle and hence results in the dissimilarity of 1 due
to ∆ATc = 1. For simplicity, only the ego vehicle interaction
with the second vehicle is considered for cluster formation
and visualization.

The parameters for varying scenarios are then reduced
to the ego vehicle velocity v1, and vehicle 2 velocity v2,
which can be further reduced by considering the ratio of
velocities v1/v2. Using the same base path for the two
vehicles from Fig. 1, the minimum distance and the angles
(relative heading θrel, angle ϕc at the point of maximum
criticality corresponding to vehicle 1 frame) as a function
of the velocity ratio of the actors is shown in Fig. 4.

The scenario set for the vehicle paths consists of an infinite
set of scenarios with velocity ratio v1/v2, assumed to be
varying between 0 and 2, as a continuous parameter. To
sample a subset from this infinite set, the velocity ratio is
discretized with a 0.01 step size, thereby resulting in 200

points (excluding v1/v2 = 0) forming 200 scenarios, with
each set of the two angles representing a scenario. The actors
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Fig. 3. Clustered 2D representation of angles, with respect to GridCell
number GCc dissimilarity metric. The different colors represent clusters
based on the dissimilarity.

are modeled to start moving from their initial position at
the start of the simulation time without any delays. From
Fig. 4, there are two velocity ratio zones where the minimum
distance is zero, which indicates a collision. The first zone
occurs at v1/v2 < 1, which indicates that Vehicle 1 is slower
than Vehicle 2. This can occur at the grid cell 5 in the road
layout. The second zone at v1/v2 > 1 indicates the vice
versa and can occur at grid cell 8 in the road layout. When
the velocity ratio is 1, the two vehicles stay clear of each
other in their respective paths as a near-miss condition.

According to the path defined for the test vehicle, the
minimum distance scene can occur at the grid cell numbers
{2, 5, 7, 8, 9}. As per the definition of dissimilarity, the
occurrence of the minimum distance at a different grid cell
between two scenarios results in 100% dissimilarity (d = 1).
Hence there are five clusters with a dissimilarity of 1, based
on 5 distinct grid cells. However, there can be more than five
clusters depending on dissimilarity thresholds. For example,
in Fig. 3, the points at grid cell 5 can be divided into at least
two clusters: one at positive angles of θrel (≈ 40° to 75°)
and the other at negative angles (θrel ≈ −90°).

To cluster the scenarios with the formulated dissimilarity
semimetric, k-medoids clustering is applied. k = 8 is
selected by evaluating the highest average silhouette score
[18] for clustering values of k ranging between 5 and 15.
The result of clustering the scenarios with k = 8 is shown
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Fig. 4. Minimum distance and continuous variables (θrel, ϕc) as a function
of velocity ratio of actors, with the found clusters of scenarios depicted by
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in Fig. 3, where the 8 colors represent the 8 clusters. It can
be seen that the three extra clusters are formed now at grid
cells 5 and 8. The split into two clusters at grid cell 5 is as
expected. The split into three clusters at grid cell 8 is due to
the variation in relative heading angle and angle in the local
frame of the test vehicle.

To further enhance visualization, the cluster regions based
on the varying velocity ratio between the actors are shown
in Fig. 4. A 2D representation of the mean vehicle orien-
tation at maximum criticality from each of the 8 scenario
clusters is shown in Table. I. The clustering of scenarios
with the dissimilarity semimetric indicates the possibility of
selecting diverse scenarios, thus considerably reducing the
number of scenarios from 200 to 8, in the example given.
Note: The dissimilarity semimetric is a novel approach for
distinguishing scenarios by examining safety-critical scenes.
This method differs from prior approaches [12]–[14], which
assess dissimilarity using the entire scenario trajectory and
therefore cannot be quantitatively compared.

V. CONCLUSIONS

The main challenge this paper aims to tackle is ensuring
diversity within a scenario generation framework for Auto-
mated Driving Systems (ADSs) by preventing the creation
of redundant scenarios. Existing approaches in literature
address this challenge by comparing scenarios using dissim-
ilarity measures, which use complete trajectory information,
or scenario parameter values. From a safety verification

standpoint, however, it is more important to compare sce-
narios based on the most critical scenes in the scenario. To
this end, we present a generic framework to formulate a
dissimilarity (semi)metric based on the most critical scene,
to compare driving scenarios accurately, thus preventing
redundancies. The primary findings include:

1) Abstraction of the road network in an System of Inter-
est (SOI) using mesh grids offers clear visualization of
the scenario, allowing the inclusion of high-level tra-
jectory information into the scenario comparison. The
mesh grids are flexible and can be adapted to different
resolutions, catering to various testing requirements.

2) The dissimilarity is determined based on the maximum
criticality scene. This focuses the comparison on parts
of the scenarios that are most relevant from a safety
verification perspective and eliminates redundancies.

3) Clustering of scenarios using the dissimilarity metric
indicates the possibility of selecting non-redundant
scenarios for testing ADSs.

It is also essential to highlight research areas that can be
further explored in this domain. Different measures can be
explored for the selection of the most critical scene, instead
of minimum distance, to study its effect on the dissimilarity
metric. The current formulation of the dissimilarity metric
can be extended to include more discrete and continuous
features, for instance, criticality caused due to the occlusion
(static and dynamic) of objects. The methodology employed,
the framework developed, and the results presented in this
paper establish a solid foundation for future investigations in
these areas.
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