Bootstrapping Aggregation of Neural Models for
Prediction of Intelligent Vehicle Performance with
Quantified Uncertainty: Safety Assessment, Failure

Analysis, and Online Speed Recommendations

Antonello Cherubini, Gastone Pietro Rosati Papini, Alice Plebe, Mattia Piazza, Mauro Da Lio, Member, IEEE

Abstract—Highly automated vehicles are complex systems, and
ensuring their safe operation within their Operational Design
Domain (ODD) presents significant challenges. Diagnosing failure
modes and updating these systems are even more demand-
ing tasks. This paper introduces a method to assist with the
assessment, diagnosis, and updating of these systems through
the development of a stochastic model that predicts safety
outcomes (collision, near-miss, or safe state) with quantified
uncertainty in any parametrized scenario. The approach uses
bootstrapping aggregation to create an ensemble of predictive
models, leveraging fully connected feed-forward neural networks.
These networks are designed with a flexible number of trainable
parameters and hidden layers, requiring minimal computational
resources. The model is trained on a small set of examples
obtained through direct simulations that randomly sample the
ODD, bypassing the traditional test matrix definition. Once
trained, the bootstrapped model serves as an identity card for
the system under test, allowing for continuous performance
evaluation across the ODD. The paper demonstrates applications,
including safety assessment, failure mode identification, and
developing a safe speed recommendation function. The model’s
compact size ensures rapid execution, facilitating extensive post-
analysis for safety argumentation and diagnosis and real-time
online use to extend the system’s abilities.

Index Terms—Highly automated vehicles, predictive models,
bootstrapping aggregation, safety assurance, safety assessment,
failure analysis, safe speed recommendation, cut-in, logical sce-
nario, ODD.

I. INTRODUCTION

Highly automated vehicles are complex systems. Proving
their safe operation within their designated Operational Design
Domain (ODD) can be a significant challenge [1]-[3]]. Even
more challenging is the task of identifying the causes of safety
failures and implementing necessary system updates.

This paper presents a method that aids in all three stages:
assessment, diagnosis, and update.

A. Cherubini, G. P. Rosati Papini, M. Piazza, and M. Da Lio are with
the Department of Industrial Engineering, University of Trento, Trento,
Italy (email: antonello.cherubini@unitn.it; gastone.rosatipapini@unitn.it;
mauro.dalio@unitn.it; mattia.piazza@unitn.it). A. Plebe is with the Depart-
ment of Computer Science, University College London, London, United
Kingdom. (email: a.plebe @ucl.ac.uk)

Manuscript received on June 13, 2024. This work was supported by the
European Commission under Grant Horizon Europe 101069573 (SUNRISE),
by the EU-funded program FSE REACT EU, D.M.1062 by the Italian Ministry
of Education and by the European Commission under Grant H2020 731593
(Dreams4Cars). The Associate Editor for this paper was (Corresponding
Author: Antonello Cherubini)

A. Contribution

The method’s core involves developing a stochastic model
capable of predicting safety outcomes (collision, near-miss,
or safe state) within a given parametrized scenario (logical
scenario), including bounds for uncertainty. This approach
broadly falls under the category of bootstrapping aggregation
[4], [5]: we construct an ensemble of predictive models
(learners) through bootstrapping [6]], [7] and combine their
outputs to estimate outcomes with bounded uncertainties.

The individual learners are constructed using fully con-
nected feed-forward neural networks due to their flexibility
in adjusting the number of trainable parameters and hidden
layers. A few neurons and parameters—typically in the tens
and hundreds, respectively—are sufficient.

The model is trained using a reasonably small number of
examples obtained through direct simulations that randomly
sample the logical scenario. This replaces the traditional
approach of defining a test matrix, thereby decoupling the
model from subsequent uses.

Once trained, the bootstrapped model is a comprehensive
assessment tool for the system under test, allowing continuous
evaluation of system performance across the logical scenario.
We demonstrate its effectiveness through three applications:

o Safety assessment against various hypothetical risks for

three self-driving systems.

« Support in identifying different failure modes.

« Development of a safe speed recommendation function.

During inference, the small size of the model components
enables rapid execution, facilitating numerous post-analysis
tasks such as safety argumentation and diagnosis. Moreover,
the model is fast enough for online usage during system
operation to address diagnosed limitations, such as providing
safe speed recommendations.

B. Structure of the paper

This paper is structured as follows: Section || provides a
literature overview about safety assessments for automated
vehicles. Section [[IIl mentions related international initiatives.
Section [[V]describes the proposed methodology and Section [V]
applies the methodology to a case study. Section [VI] analyzes
the trained models. Section discusses three applications.
Finally, Section [VIII| gives some important remarks. Additional
details about network optimization are in Appendix [A]

mailto:antonello.cherubini@unitn.it
mailto:gastone.rosatipapini@unitn.it
mailto:mauro.dalio@unitn.it
mailto:mattia.piazza@unitn.it
mailto:a.plebe@ucl.ac.uk

SAFETY ASSESSMENT APPROACHES

SCENARIO-BASED
TESTING

REAL-WORLD
TESTING

R
STAGED
INTRODUCTION

GENERATION OF
LOGICAL SCENARIOS

(DATA-DRIVEN
SHADOW MODE L

SELECTION OF
CONCRETE SCENARIOS

J

N

FUNCTION-BASED
TESTING

COVERAGE-ORIENTED
\
RISK-ORIENTED

[ADAPTIVE SEARCH]

FORMAL
VERIFICATION
N —

J

Fig. 1. A possible taxonomy of the most adopted strategies for safety
assessment of AVs.

II. SAFETY ASSESSMENT IN THE LITERATURE

Due to the strong interest in rapidly introducing automated
vehicles (AVs) to the market, a significant number of publica-
tions on their safety validation have emerged. However, there
is still no consensus on a unified approach to assessing AV
safety.

Drawing from the work of Riedmaier et al. [8]], we identify
six primary categories of safety assessment, as shown in
Fig. [T}’

1) Real-world testing. Also called Naturalistic-Field Opera-
tional Testing (N-FOT) would ideally prove the safety of
the system by test-driving the AV in real traffic, observing
its performance, and making statistical comparisons to
human drivers. However, Kalra and Paddock [1] demon-
strated that an AV must drive 11 billion failure-free miles
to determine with significant confidence that its failure
rate is lower than the human driver fatality rate in the
US. Even with a fleet of 100 AVs driving 24 hours a
day, 365 days a year, at an average speed of 25 mph,
this would take 518 years. Aside from the logistical
and economic impracticalities, a solely distance-based
safety evaluation has another significant downside. Under
naturalistic traffic conditions, there is an extremely low
level of exposure to high-risk events, which are crucial
for demonstrating the system’s safety under challenging
conditions.

2) Staged introduction. This approach works by artificially
limiting the ODD of the system to make real-world test-
ing economically feasible and not overly time-consuming.
For example, the ODD can be restricted to driving on
a specific section of a road under good visibility. If the
vehicle is assessed as safe in this limited ODD, the scope

can be gradually expanded. System manufacturers such as
Daimler and Bosch are applying this procedure by testing
their Level 4 systems in a delimited road network in San
Jose, Californieﬂ Waymo at Phoenix, San Francisco and
Los Angeleﬂ In practice, however, this approach only
defers testing to the later extensions of the Operational
Design Domain (ODD).

3) Shadow mode. Employed by manufacturers such as
Teslﬂ this approach involves operating the autonomous
driving agent passively in a vehicle under human control.
While the autonomous agent receives real sensor inputs,
it does not control the vehicle’s actuators. Simulations
are then conducted to assess the agent’s decisions by
comparing them to the human’s behavior. However, the
validity of these simulations is limited. The behavior of
other road users is influenced by the decisions of the
actual driver. If the autonomous agent makes different
decisions, the subsequent actions of other users become
inconsistent.

4) Function-based testing. This approach focuses on testing
a specific functionality within a system, as defined by
a set of requirements. A small set of fixed tests is
designed based on these requirements. While this method
is commonly used to assess the safety of Advanced Driver
Assistance Systems (ADAS), such as Adaptive Cruise
Controﬂ and Advanced Emergency Braking Systemﬂ
it encounters challenges when applied to Autonomous
Vehicles (AVs). Defining the required functionality of
AVs in every conceivable situation proves to be very
difficult.

5) Formal verification. This approach employs mathematical
methods to formally prove the safety of systems across
the entire Operational Design Domain (ODD). A critical
step in these methods is formalizing traffic rules into
a machine-readable format. Some techniques focus on
proving that the AV cannot cause any accidents for which
it is at fault [9]. Others aim to determine the states a
system can reach from given initial states, inputs, and
parameters [10]. If the reachable set of the AV does not
intersect with the predicted occupancy sets of other traffic
participants, the AV is deemed safe. Another formal
verification approach involves synthesizing correct-by-
construction controllers [11]], which are automatically
generated from formal specifications. However, the main
drawback of all these methods is their current lack of
scalability to complex systems and their computational
expense (and, often, the assumption of correct behavior

Unttps://www.bosch-presse.de/pressportal/de/en/bosch-and-mercedes-benz-
start-san-jose-pilot-project-for-automated-ridesharing-service-204032.html
accessed on June 10th 2024

“https://support.google.com/waymo/answer/9059119?hl=en accessed on
June 10th 2024

3https://www.youtube.com/live/Ucp0TTmvqOE at 2:56:00, accessed on
June 10th 2024

4ISO 15622:2018 Performance requirements and test procedures
https://www.iso.org/standard/71515.html accessed on June 10th 2024

*Regulation No 131 of the Economic Commission for Europe of the United
Nations (UN/ECE) |http://data.europa.eu/eli/reg/2014/131/0j| accessed on June
10th 2024

https://www.bosch-presse.de/pressportal/de/en/bosch-and-mercedes-benz-start-san-jose-pilot-project-for-automated-ridesharing-service-204032.html
https://www.bosch-presse.de/pressportal/de/en/bosch-and-mercedes-benz-start-san-jose-pilot-project-for-automated-ridesharing-service-204032.html
https://www.bosch-presse.de/pressportal/de/en/bosch-and-mercedes-benz-start-san-jose-pilot-project-for-automated-ridesharing-service-204032.html
https://support.google.com/waymo/answer/9059119?hl=en
https://www.youtube.com/live/Ucp0TTmvqOE?si=pRCt17gKu1uQ9xHV&t=10574
https://www.iso.org/standard/71515.html
http://data.europa.eu/eli/reg/2014/131/oj

for the other road participants).

6) Scenario-based testing: This widely adopted approach
assesses the safety of AVs through simulations of various
scenarios, each defined by a set of parameters. How-
ever, as scenarios become more complex, the need for
additional parameters arises, resulting in a computational
burden in enumerating and simulating these scenarios.
Therefore, a critical aspect of scenario-based testing lies
in the design and selection of scenarios that align with
test requirements and expose the most relevant high-risk
events.

The work presented in this paper falls within the category of
scenario-based testing. The rest of this section analyzes diverse
characteristics of scenario-based approaches.

A. Scenario-based testing

An essential step in scenario-based testing is how to define
the scenarios. Menzel et al. [12] distinguish three types of
scenarios according to their level of abstraction:

(i) functional scenarios are defined by natural language
descriptions, e.g., a three-lane motorway in a curve;

(ii) logical scenarios are the parameterization of functional
scenarios and define the ranges and distributions of the
parameter spaces, e.g., lane width (w € [2.3, 3.5] m),
curve radius (r € [0.6, 0.9] km);

concrete scenarios represents an instance of a logical
scenario and is defined by precise parameter values, e.g.,
w=32m,r=0.7km.

(iii)

The ODD of an AV is typically defined in terms of func-
tional scenarios.

When assessing the AV’s safety within the ODD, it is
necessary to convert these functional scenarios into logical
scenarios. A primary challenge involves determining the most
appropriate parameters, along with their respective ranges
and distributions. Furthermore, to conduct the tests, specific
concrete scenarios must be selected from the logical scenarios.

1) Generation of logical scenarios: The challenge of gen-
erating a comprehensive set of logical scenarios has led to
diverse strategies. Consider a common case study in ODD
analysis, such as a cut-in scenario, where an external vehicle
enters the lane of the ego vehicle, forcing the latter to react
and adjust its trajectory. To parameterize cut-in scenarios, a
broad range of parameter choices can be found in the literature.
For example, [13] and [14] employ two different sets of
five parameters to describe the scenario, where the former
includes the road width, while the latter considers the relative
velocity. In contrast, [2f, [3], [15] examine a six-parameter
scenario with three vehicles. Moreover, [[16] and [[17] include
polynomial parameters to model the longitudinal and lateral
motion, resulting in a total of eight and fifteen parameters,
respectively. In other words, modeling a functional scenario
with logical scenarios involves projecting from an (almost)
infinite-dimensional space into a relatively low-dimensional
parametrized space that will never fully represent the nuances
of the real world.

According to Riedmaier et al. [§]], strategies for generating
logical scenarios can be classified into two groups:

(i) knowledge-based generation, which creates logical sce-
narios by leveraging information from experts, standards,
and guidelines, which are in some cases structured as
ontologies [18]];

(ii) data-driven generation, which extracts information di-
rectly from real-world driving data, typically using ma-
chine learning [19], Monte Carlo [20], or Importance
Sampling [21].

A fundamental prerequisite for data-driven scenario generation
is the comprehensive nature of the naturalistic dataset. While
many automotive companies possess proprietary datasets,
some large-scale datasets have been made publicly accessible
in recent years, such as [22], [23]. However, in natural-
istic datasets, the occurrence of highly relevant situations
(accidents, near misses) is naturally low. Hence, data-driven
approaches must address this issue by applying sophisticated
strategies to augment the data or accelerate the discovery of
rare events, ensuring the creation of a sufficient set of relevant,
high-risk scenarios [24]. On the other hand, knowledge-based
approaches can address this challenge by deliberately design-
ing logical scenarios with parameter ranges and distributions
that lead to high-risk situations.

2) Selection of concrete scenarios: The second challenge
is determining how to select concrete scenarios for the safety
assessment of the AV system. The goal is to identify a limited,
representative set of concrete scenarios to draw reliable con-
clusions about the AV’s performance [3]]. Selection approaches
are divided into two main categories:

(1) coverage-oriented selection, which aims to maximize
testing coverage under a certain coverage metric, thereby
testing as thoroughly as possibleE];

(ii) risk-oriented selection, which generates targeted scenar-
ios to facilitate fault detection, focusing on high-risk
events, collisions, and worst-case scenarios.

A straightforward method for coverage-oriented selection
is to create a “test matrix” by sampling from the parameter
ranges, producing a table where each row represents a concrete
scenario. The test matrix is considered a credible and repeat-
able method [25]. For example, the Euro NCAP’s test protocol
for autonomous emergency braking (AEB) relies on a test
matri However, enumerating all possible concrete scenarios
through a test matrix can be intractable, and additional strate-
gies are needed to focus on high-relevance scenarios within
the matrix. Another method for coverage-oriented selection
is the T-wise coverage [26], widely adopted in software and
communication systems verification. This method assumes that
T-parameter combinations can trigger most system circum-
stances, and that the values of other parameters are weakly
related to the results. 7T-wise coverage represents the ratio
of distinct T-parameter combinations covered during testing
to the total number of possible T-parameter combinations.

OM. Tatar (2018), Chasing critical situations in large parameter spaces.
https://www.pegasusprojekt.de/en/lectures-publications

"https://cdn.euroncap.com/media/26996/euro-ncap-aeb-c2c-test-protocol-
v20.pdf accessed June 10th 2024

https://www.pegasusprojekt.de/files/tmpl/pdf/Tatar_AVTD_Symposium_2018.pdf
https://cdn.euroncap.com/media/26996/euro-ncap-aeb-c2c-test-protocol-v20.pdf
https://cdn.euroncap.com/media/26996/euro-ncap-aeb-c2c-test-protocol-v20.pdf

However, a key challenge with this method is determining the
empirical evidence for the values of T', which is currently not
feasible for AV testing.

A valid alternative to coverage-oriented selection is to
explore unusual, dangerous, and extremely critical scenarios.
Risk-oriented selection is also called falsification as it seeks to
find counterexamples that violate the safety requirements. Sun
et al. [3]] classify these methods into four categories depending
on the focus of the selection.

(1) High-risk scenarios are situations with the potential to
endanger vehicles and road users, possibly resulting in
severe accidents if they were to happen in reality. Identi-
fying high-risk scenarios can be achieved through various
methods, such as binary search techniques [27], evolu-
tionary algorithms [28]], or by amplifying the criticality
of typical traffic scenarios using nonlinear optimization
methods [29]]. However, there is still no uniform standard
for defining high-risk scenarios.

(i1) Boundary scenarios are situations located in regions of
the parameter space where small changes lead to transi-
tions between safety and danger. For example, Tuncali et
al. [30] design a robustness evaluation function to identify
boundaries between safe and unsafe behavior. In another
study [31], they introduce a framework for the adversarial
generation of test scenarios by detecting collisions in
boundary regions of the parameter space.
Worst-case scenarios represent the most critical situations
an AV may encounter within its Operational Design
Domain (ODD). Various methods are used to identify
worst-case scenarios in the literature, including genetic
algorithms [32] and neural networks [33], [34]. A com-
mon critique of analyzing worst-case scenarios is their
perceived improbability, which may make accounting for
them too costly under typical operating conditions. How-
ever, despite their rarity, these scenarios remain physically
possible, and evaluating an AV in such conditions is
not futile. For example, Liu et al. [35] propose a dual
formulation that considers both the most likely worst-case
scenario and a less likely one. Furthermore, assessing
worst-case performance can help reinforce public trust
in AVs.

Collision scenarios are the focus of a substantial portion

of research, including the work presented in this paper.

Methods for searching for collisions include rapidly-

exploring random trees [36], rule-based approaches [37]],

and generative neural networks [38]]. Additionally, Calo et

al. [39] employ genetic algorithms to explicitly search for
collisions that can be avoided by changing the parameters
of the path planner.

(iii)

(iv)

B. Adaptive search with Surrogate models

Scenario-based testing typically involves simulating all sce-
narios upfront. However, an increasingly popular alternative
is the adaptive search, also called the Adaptive Design of
Experiments (ADOE) method. Instead of examining all con-
crete scenarios simultaneously, the adaptive search begins with
a limited set and gradually identifies new ones for the next

simulations. A surrogate model (SM) is fitted at every step to
approximate the AV’s behavior in the simulated scenarios. The
SM is then used at each iteration to select the next concrete
scenario to test. This selection process is guided by an ac-
quisition function, which balances the selection of potentially
dangerous scenarios with exploring rare ones. These values
are computed by the SM for each candidate scenario.

Adaptive search is particularly effective in accurately deter-
mining the boundary between safe and dangerous scenarios.
Bhosekar and Ierapetritou [40] emphasize the importance
of selecting the most appropriate surrogate model for the
performance of adaptive search, which can vary depending
on the application. Sun et al. [2] compare six popular SMs
and find that extreme gradient boosting performs best across
different Operational Design Domains (ODDs).

C. Result evaluation

The taxonomy presented thus far encompasses diverse
methodologies for testing AV systems. The test results ob-
tained need to be evaluated to draw meaningful conclusions
about the safety of the AV. Junietz [41]] identifies two types
of evaluations: microscopic evaluation focuses on individual
scenarios, while macroscopic evaluation refers to a statistical
statement on the risk of the system, e.g. the occurrence rate
of fatal accidents. Scenario-based testing provides evaluations
at the microscopic level. The problem of how to exploit
microscopic evaluations to obtain a macroscopic evaluation
of the AV is still an open question.

Regarding microscopic evaluation, Mahmud et al. [42] pro-
vide an overview of the most adopted criticality metrics. They
distinguish among indicators based on temporal proximity,
spatial proximity, and deceleration rate.

III. SAFETY ASSESSMENT IN INTERNATIONAL INITIATIVES

Several industrial research programs have recently received
funding, reflecting the critical importance of safety assess-
ment for the market introduction of automated vehicles. The
currently ongoing projects include the European SUNRISE
(Safety Assurance Framework for Connected and Automated
Mobility Systems), the German VVM (V&V Methods), the
Japanese SAKURA, the Korean KATRI, and the American
AVSC (Automated Vehicle Safety Consortium).

These initiatives employ a combination of methodologies
outlined in the previous section to establish standardized safety
assessment procedures.

For instance, SUNRISEE] is organized into three mac-
roblocks. The first focuses on creating scenarios based on
the Operational Design Domain (ODD) input, storing them
in machine-readable formats. It utilizes both knowledge-based
and data-driven generation methods. The framework aims to
integrate diverse and heterogeneous sources of information.
In the second macroblock, concrete scenarios are created and
allocated to various test instances, including simulations, X-
in-the-loop (XIL), and proving grounds. The final macroblock
involves the evaluation of test results at the micro-scale and

8https://ccam-sunrise-project.eu/about/ accessed June 10th, 2024

https://ccam-sunrise-project.eu/about/

their aggregation into an analysis to draw macroscopic conclu-
sions. If deemed insufficient, strategies such as generating new
concrete scenarios, reallocating to different test instances (e.g.,
from simulation to proving ground), or requesting completely
new logical scenarios can be implemented. Additionally, an
in-service monitoring and reporting system is envisioned to
provide lifelong support.

IV. METHODOLOGY

In alignment with Section [[-A] our objective is to develop
a fast model capable of continuously predicting an intelligent
vehicle’s performance across a defined logical scenario while
also providing quantified uncertainty.

Let x be a vector collecting a concrete scenario parameters
p; —i.e., © = {p1,...,pn}. We can think of x as a point in
the logical scenario parameter space. Let:

e = f(x) (D

indicate the mapping between x and the outcome e, which
is a vector of the performance indicators obtained by testing
the concrete scenario .

The function f(.) can be evaluated with experiments on a
few points x;, or with a validated simulation tool on a much
larger number of points. In the latter case, f(.) is typically
deterministic: repeating a simulation yields the same results
unless noise and/or hidden parameters are explicitly modeled
in the simulation environment. We consider here the simulation
deterministic case.

Even though simulations are much faster than real-world
tests, the number of simulations f(x;) necessary to assess
a system’s performance across a given logical scenario may
still be prohibitive [2f, [3]. Furthermore, evaluating a single
f(=;) via simulation is hardly compatible with computations
carried out during system operation. While simulations can
be performed offline to evaluate a system’s performance, they
cannot be executed online (during operation) to assess whether
the current condition is safe and determine the necessary
actions to achieve a safer condition. This latter capability is
crucial because a self-driving system with this ability could
be aware of its own limits and environmental risks, enabling
it to engage in cautious preventive behaviors.

We aim to develop a predictive model that is significantly
faster than simulations (as demonstrated later, achieving near-
million-fold acceleration in computations is feasible):

{e} = f(=z) 2)

The tilde sign in f (.) indicates that approximates test
outcomes (1). The vector notation {.} denotes that f(.) is an
ensemble model that estimates the distribution of e, taking
into account uncertainties arising from finite training sets.
Therefore, a crucial aspect of the method is quantifying
the approximation errors to determine the confidence with
which conclusions derived using are valid for real test or
simulation results (T).

A. Implementing the approximant function f ()

There are several machine learning methods potentially
suited for creating approximant functions f (.). In this paper,
we opt for neural networks due to their flexibility. By adjusting
the number of neurons, we can easily manage the number of
trainable parameters to align with the available training exam-
ples. Varying the depth of the networks (i.e., distributing the
neurons across multiple hidden layers) and selecting different
activation functions allow us to control the complexity of the
approximant function.

Appendix |A| provides an analysis of various network ar-
chitectures. For the case study presented in this paper, which
comprises 5000 input-output (x — e) examples, with 3000
used for training and the remaining for validation and testing,
we identified an optimal configuration. This configuration
involves two hidden layers with Tanh activation, totaling 30
neurons and 343 trainable parameters. Notably, this parameter
count is approximately 1/10 of the number of examples in the
training set. Specifically, the network is labeled “10 Tanh 20
Tanh”, indicating two hidden layers with 10 and 20 neurons,
respectively, both utilizing Tanh activation, and a final softmax
layer for classification.

B. Creating an ensemble model via bootstrapping

The bootstrapping technique is a method used to estimate
the variance of statistical estimators in regression or classifier
models [6]]. This method involves creating numerous alterna-
tive training datasets by resampling from an existing dataset.
These new datasets are generated in such a way that they can
be considered as being drawn from the same population as
the original dataset. By training a model on the resampled
datasets, an empirical distribution of estimators is obtained. A
tutorial on the application of bootstrapping to neural models,
which also discusses the relevant theory, can be found in [7].

There are several variants of the bootstrapping method. In
this paper, we use the Split/Train variant [7, Section 6.1].
Given N examples, we randomly divide them into three
subsets of N’, N”, and N’ elements, ensuring no overlap
between them. The N’ subset is used as the training set for
updating the weights in the gradient descent algorithm. The
N" subset serves as the validation set for model selection

Class Decoded
probabilities class
_>|Net1 ey :fl(x) : N > E
Scenario = S
parameters —>|Net2 e = fr(x) l—:—'_ 0
x —» ':::::_:::::::::::::::::
i e; E
_>|Netn e, = fu(x) }—?—»H—»D E

Fig. 2. Boostrapped Neural Model.

and overfitting monitoring during training. The N’ subset is
reserved as the test set to evaluate the model’s performance
on independent examples not used during training or model
selection. Further details are given in Appendix [A]

By splitting the N examples into different training, valida-
tion, and test subsets K times, we train K equally plausible
neural network models, which can be arranged in parallel as
shown in Fig. IZI The outputs of the fi(.) models form an
empirical distribution of predictions.

Since the number of network parameters is on the order
of hundreds (Section [[V-A), repeating the training of one
network K times in the bootstrapping process is feasible. On
average, training one network takes less than 40 seconds on
an Apple Silicon M1 using the ARM-optimized version 12.3.1
of Wolfram Mathematica. Therefore, training, say, X = 100
models, takes just over an hour.

C. Decision (aggregation) algorithms

As the bootstrapping method produces an ensemble of
predictive models (Fig. 2), the question arises of how to
combine the empirical distributions of predictions e;. This falls
within the realm of ensemble learning [4], [3], and specifically
for this paper, bagging (Bootstrap Aggregation) techniques.

Referring to Fig. [2l we consider three different methods:
one using class probabilities and two using decoded classes.

1) Mean probabilities: This method computes the average
of all learners’ probabilities for each class. For example, the
collision probability of the ensemble model p.(x) is:

1 K
pe() = 22 D _pei(®) 3)
i=1

where p.;(x) is the collision probability of model i. The
mean probabilities p.(x), p,(x) and ps(x) are then used to
decode the ensemble output class (where s, n and s stand for
collision, near-miss and safe outcome).

2) Majority voting: The class with the majority of votes is
the ensemble output class. In the case of ex aequo, preference
goes to collision and near-miss in the order.

3) Consensus threshold (ng): This method is introduced
to bias the ensemble classifier towards minimizing misclas-
sifications of the collision class. The algorithm counts the
output classes, and if the collision class reaches a threshold of
votes (ng), the output is set to collision. Otherwise, the output
follows the majority voting scheme.

The rationale behind this algorithm is that if only a few
classifiers return collision, then the risk of collision should
not be dismissed. Thus, we set a threshold ng/K to indicate
the requested confidence for not misclassifying collisions. By
doing this, we improve the Recall of the collision class at the
expense of its Precision.

The output class can be formalized as follows:

collision (¢) Ne > N
near-miss (n) n. < ng An, > Ng @
safe (s) Ne > Ng A Ny, > Nig

e =

ODD: highway traffic

SCENARIO: unexpected cut-in manoeuvre

Fig. 3. An example scenario: In an attempt to avoid missing an exit,
a distracted driver (in the blue car) suddenly changes lanes. The ego
vehicle (orange car) must react quickly to avoid a collision.

where n., n,,, and n, are the number of votes for each class.

In the following example, we will use this algorithm
with two thresholds: ng/K = 1/100 (confidence 99%) and
ng/K = 10/100 (confidence 90%).

D. Creating the original training examples

Given a logical scenario with parameter ranges, we sample
the scenario to create input-output examples xz; — e;, ¢ €
[1, N]. The sampling points x; are initially spread uniformly
and randomly in the domain of the logical scenario to avoid
biases and create a training set balanced across the logical
scenario. A simulation is conducted for each x; to calculate
the corresponding output e;. In other words, the pairs x; — e;
are formed with ().

The number N of samples is initially determined based on a
predefined computing time budget. However, since the model
quantifies uncertainties, we can assess whether additional
samples might be necessary.

V. CASE STUDY

In Fig. [3] an example is presented to illustrate the method.
The Operational Design Domain in this case is a two-lane
motorway. The scenario involves a distracted driver in the
second lane attempting a careless cut-in maneuver to avoid
missing an exit. These types of situations, which can lead to
accidents, are not uncommon and can be found documented
online, for example in [43]).

To analyze this case, we will follow the steps outlined in
Fig.[] The first three steps correspond to the scheme described
in Section [[I=Al

Specifically, the logical scenario is shown in Fig. [5] It is
characterized by 5 parameters: the velocities of the ego and
obstacle (vg and v1), the leading distance (d), the duration of

Operational
Design Domain
(ODD)

Scenario in the

ODD
(functional scenario)
i, ; Parameters
Parametrization ey
of the Scenario o

(logical scenario)

::I::: (__Simulation)

Sampling of the —=
Scenario 3.6
(concrete scenario)

e

Training of Stochastic Predictive Model
Input Output
Simulation Parameters Safety Level
(Vo,d,v4,a,T) (safe, near miss, collision)
/ . .
Applications
Offline Online
Safety Assesment
on Naturalistic
Driving Data Self Driving Agent
Enhancement
Safe Speed Advisor
Failure
Mode Analysis
~ J

Fig. 4. Workflow followed for safety and failure mode analysis and
for the safe speed function of the case study.

the lane change (1), and the obstacle’s (average) acceleration
during the lane change (a), which determines the final velocity
v,y = vy +al.

This parametrization is used to explain the methodology. We
do not claim that is it optimal. In the literature cut-in scenarios
have been described with different sets of parameters (ranging
from 5 to 15) as discussed in Section [[I-AT]

We should keep in mind that during the parametrization
process, some aspects of the functional scenario are inevitably
lost in the parametric representation. For instance, while T’
represents the time taken to complete the lane change, it does
not fully describe the exact trajectory shape. Additionally,
the assumption of average longitudinal acceleration for the
entire duration 7', used to represent decelerations such as
those seen in the referenced video [@], is a simplified model.
Furthermore, factors such as lane widths, road curvature,
vehicle dimensions, vehicle type, surrounding traffic, and other
real-world conditions are not accounted for in the model.

A. Training the stochastic predictive model

After clarifying the above limitations (the format of a
logical scenario is not the topic of this paper), our contribution
begins at the step corresponding to the concrete scenario (Fig.
[). At this point, we deviate from the workflow described in

Simulation input parameters

Fig. 5. The logical scenario is defined with 5 parameters: ego and
obstacle velocities (vo and v1), leading distance (d), lane change
duration (7"), and obstacle acceleration during the lane change (a).

At time of minimum distance dyy

Fig. 6. Simulation output: For each simulation, we record the position
of the obstacle (blue car) in the ego reference frame when the
Euclidean distance between the cars, dxy, is at a minimum, or at
the moment of collision.

Section [[I-A2] as follows.

1) Sampling the logical scenario: we sample the logical
scenario according to Section [[V-D] with N = 5000 samples,
which proves to be sufficient for the following applications.

We can define an indicator of sampling density as follows:

Ny = NP Q)

where D is the number of dimensions of the logical scenario.
In our case, D = 5, N = 5000, and hence N; = 5.5. This
means that the density of the 5000 samples is, on average,
the same as a regular grid with 5.5 hypothetical divisions per
dimension (which defines the resolution of the model and is
commented on later in Section [VI-E).

The simulations were performed using IPG CarMaker [44].
Each simulation represents a hypothetical event lasting 60
seconds. Fortunately, the simulations run at a faster pace than
real-time. With the Intel i7 12700H CPU, which we utilized,
they typically run 13 times faster. Therefore, each event took
about 4.5 seconds to be simulated, in addition to another 2.5
seconds of overhead. Consequently, the total time required
to produce the 5000 training examples was approximately 10
hours.

The simulations start with the ego vehicle (the orange car in
Fig.[5) beginning in the right lane at an initial velocity vo. The
obstacle (blue car) starts with a velocity of v; in the left lane at
a distance d (Fig. E[) At the start of the simulation, the obstacle

Obstacle position at minimum distance

°r Safe Confusion on parallel driving \ Travel direction ——p
o "." 3 c ot ..o+ +f Collision -:'°3_:'? W .. RS,
£ 4 A R . L T i A
= : . Ego W e T s e T
Near miss ¢ . ’ >

.
e
.o
.
Evasion of rear end collision
1

-10

Fig. 7. Codriver training set. Collision points in red and the nearest
falls within the elliptic grey zone.

initiates a lane change maneuver lasting for a time 7' (the
exact trajectory of the obstacle is determined by its controller,
which is the IPG Driver). During the lane-changing maneuver,
the blue car may also experience a constant longitudinal
acceleration or deceleration of a.

The ranges for the logical scenario parameters are outlined
in Table [} It’s important to note that the values for 7" and a
go beyond the typical naturalistic driving ranges. Additionally,
we are assuming that the cut-in maneuver might initiate even
if the obstacle is behind the ego vehicle (d < 0), although this
is highly unlikely. The aim at this stage is to build a model
that remains valid outside the scope of naturalistic driving
scenarios, encompassing potential but improbable situations.
This will allow us to use the trained model later on to assess
risks that fall within the training domain, which includes
natural driving data. For certain combinations of 7', a, and
vy, the final velocity of the obstacle (vqy,y = v1 + aT') might
be negative. If this happens, T" is adjusted to make vy ¢y = 0,
i.e., the obstacle stops when it reaches the right lane.

TABLE I
RANGES OF VARIABLES IN THE LOGICAL SCENARIO (£2)

Variable Range

min max
V0 (m/s) 10.0 25.0
v1 —wvg (m/s) -5.0 7.0
T (s) 15 75
a (m/s2) -6.0 3.0
d (m) -20.0 40.0

2) Systems under test (SUTs): We will illustrate the

methodology described in this paper using three self-driving
agents. Two of these agents, Codriver [45]] and Motion Planner
[46], are systems that control both longitudinal and lateral
dynamics. They were developed in previous projects. The third
agent is a simple longitudinal controller based on the Intelli-
gent Driver Model (IDM). It has been designed specifically for
this study, following a logic similar to [47]. More specifically:

e The Codriver is an autonomous driving agent inspired
by biological concepts such as the Affordance Compe-
tition hypothesis [48]]. It was initially developed as part

points in blue or green. A near-miss is registered if the nearest point

of the EU H2020 Dreams4Cars projecﬂ and has since
undergone further improvements. This system is capable
of producing emergent behaviors and adaptive behaviors
to handle unexpected situations without being explicitly
programmed to do so [49].

The Motion Planner is an advanced robotic trajectory
planner developed as part of a recent project. The
system combines sampled-based tree exploration (semi-
structured RRT*) and analytic optimal tree connec-
tions (clothoids and minimum-time-minimum-jerk mo-
tion primitives) to generate safe and efficient trajectories
in complex environments. It can also be adapted to
produce different driving styles [46].

The Intelligent Driver Model (IDM) is the well-known,
simple follow-the-leader model for longitudinal control
[50]. The algorithm controls the longitudinal dynamics in
relation to leading vehicles and can be adapted to merging
vehicles as shown in [47]].

3) Performance indicators: In general, the model output e
in (T} 2) can be any vector of performance indicators relevant
to the functional scenario’s goal. As mentioned earlier, this
study aims to assess whether and to what extent the systems
under test can avoid a collision when the obstacle maneuvers
incorrectly. That is why f(.) in Section is implemented
as a classifier with three possible output classes: 1) collision
(¢), 2) near-miss (n), and 3) safe clear path (s). We introduced
the “near miss” class to gather more informative data than
simply collision/non-collision.

For each simulation, we defined the output classes as
follows: In the event of a collision, we recorded the position
of the obstacle in the ego reference frame at the time of the
collision. If there is no collision, we recorded the minimum
Euclidean distance (dxy) between the ego vehicle and the
obstacle, as well as the position of the obstacle in the ego
reference frame at the minimum distance. The origin of the
ego reference frame is located in the center of the car, with
the longitudinal axis (x) pointing forward and the lateral axis
(y) pointing leftward. For example, in Fig. [f] the minimum

9http://www.dreams4cars.eu/en

distance dxy is 3.3 m, and the relative coordinates of the
obstacle are (dx,dy) = (2.53,2.13) m.

Figure |7] displays the collision points in red and the nearest
points in blue or green for the codriver dataset. The grey ellipse
represents a shape that just about clears the centerline of the
left lane and has a half-length equal to twice the total length
of the two vehicles. If the nearest point falls within the grey
zone, it is considered a near-miss.

B. Training data and neural model training

The training data consists of points x;, as determined in
Section [IV-D| and the corresponding class labels determined
in Section [V-A3] In total, there are N = 5000 input-output
examples.

T; — €4, iE{l,...,N} (6)

Using the bootstrapping method outlined in Section
we then train K = 100 neural networks to create the model
shown in Fig. P} The choice of K = 100 is justified in
Appendix [A] (see also [7] for general guidelines concerning
the numerosity of the models). Training all 100 networks takes
around 3700 seconds using an Apple M1 8-core CPU.

To evaluate a single network branch (Fig. [Z), the number of
operations needed is calculated as follows:

1) The first layer consists of 10 neurons with an input
dimension of 5. This requires 10x5 multiplications, 50
additions (including the biases), and 10 Tanh operators.

2) The second layer has 20 neurons, requiring 10x20 mul-
tiplications, 200 additions, and 20 Tanh operators.

3) The output layer is composed of 3 neurons, which needs
20x3 multiplications, 60 additions, and 3 softmax opera-
tors.

In total, one branch in Fig]2] requires 620 multiplica-
tions/additions and 33 operators, i.e., 62000 simple operations
plus 3300 functions for the entire ' = 100 network model.

When evaluations are conducted in batches offline, the
inference time, including the overhead of using the MXNet
neural network framework, is approximately 32 microseconds
on the mentioned M1 processor. This is roughly 200,000 times
faster than the 7 seconds required to run a simulation in the
IPG environment, which itself is several times faster than real-
time.

For online use, the weights of the neural layers can be
extracted and included in a custom function that performs the
same operations as the network. In this case, the computations
will have much less overhead and will be even faster.

VI. ANALYSIS OF THE TRAINED MODELS

Before exploring different types of applications (Sec-
tion , we will first analyze the learned function in this
Section.

In Fig.[8] two bi-dimensional cross-sections of the parameter
space are shown at vy = v; = 25m/s. The chart on the top
represents an obstacle deceleration of a = —3m/ s2; at the
bottom, an obstacle proceeding at a constant speed.

The figures display the superimposed output class of the 100
bootstrapped neural models for the three agents. Pure colors
indicate that all models predict the same class, while blended
colors indicate disagreement.

It’s immediately clear that the three systems behave quite
differently, and the difference is unambiguously captured.

A. Confidence levels

For a given lane change time, the interval of leading dis-
tances that causes collisions is well defined, and the intervals
lacking consensus are also clear. Figure [9] is a different
representation of the bottom left chart of Fig. [§] It shows
the contours of the collision class of the individual models of
Fig[2] Dashed contours outline the areas where all the models
agree. Additionally, contours representing 50%, 90%, and 99%
quantiles (indicating the percentage of models that agree) are
also displayed. Having chosen K = 100, a granularity of 0.01
is obtained for the quantile contours.

Notably, regions lacking consensus tend to be relatively
short in the longitudinal direction d. A couple of meters
separates the confidence levels corresponding to 50, 90, and
99 percentiles. This means that safe-distance gaps might be a
surrogate means to guarantee collision-free performance.

B. Generalization capacity of the ensemble model

To evaluate the generalization capacity of the ensemble
classifiers described in Section [IV-C| we prepared a new
independent test set consisting of 1613 examples generated
from new simulations.

Fig.[10]shows the confusion matrices for the majority voting
aggregation algorithm (Section and for the consensus
threshold algorithm for respectively no/K = 10/100 and
no/K =1/100, i.e., 90 and 99 percentiles (Section

As illustrated in the figure from left to right, the number
of false negatives for the collision category decreases as the
threshold ny /K decreases. When ngy/K = 1/100, no collision
examples are mistakenly classified as near misses or safe
events. Hence, the false negative events occur between the
0.5 and 0.99 quantiles contours in Fig. [0

For safety argumentation, one might want to minimize the
amount of collisions that are mistakenly classified as safe.
Therefore, the algorithm on the far right might be the most
suitable option. However, in this case, several near-miss events
and a few safe events are incorrectly classified as collisions,
as the confusion matrices show.

The other aggregation criteria in Section [V-C| may fulfill
different roles that are explained below.

C. Accuracy, Precision and Recall

Table [lI| provides a comparative analysis of the accuracy
of the aggregation algorithms mentioned in Section [[V-C|
Additionally, the table presents the precision and recall for
the collision class and the intervals of the same indicators for
the individual networks illustrated in Fig[2]

10The mean probabilities algorithm (Section |[[V-C1) is very similar to the
majority voting one and is not shown.

Codriver

a=-3m/s?

Leading distance, d (m)

-20H n n n /
15 3. 4.5 6. 75

Lane change time, 7T (s)

a =0 m/s?

Leading distance, d (m)

-20 4 N

L L

15 3. 45 6. 75
Lane change time, T (s)

Leading distance, d (m)

Leading distance, d (m)

Intelligent Driver Model Motion Planner
a=-3m/s? a = -3 m/s?

40F

301
E

~ 20+
)

g 10
35
=
=

g o
3

—-10+

~20H o : : ! ~20H! n . : !
15 3. 45 6. 75 15 3. 4.5 6. 75

Lane change time, T (s)

a =0 m/s?

-20 ¢! n

15 3. 45 6. 75
Lane change time, T (s)

Leading distance, d (m)

-20

Lane change time, T (s)

a =0 m/s?

| n n L

15 3. 45 6. 75
Lane change time, 7 (s)

Fig. 8. Cross-sections of the parameter space at vo = v1 = 25m/s. The figures display the superimposed output class of the 100 bootstrapped
neural models for the co-driver agent. Pure colors indicate agreement, while blended colors indicate disagreement.

a=0m/s* (Collision class)

15F
quantile = 0.99
ol Consensus quantile =0.9
Ny - quantile =0.5

Consensus “*. __
-~

—
S aciCof
5~;

-_— ~

Leading distance, d (m)

Consensus
S ===

—_—
Consensus =

-154 . . .
1.5 3. 45 6. 75

Lane change time, 7 (s)

.

Fig. 9. Contours of the collision class of the individual models.
Dashed contours outline the areas where all the models agree. Con-
tours representing 50%, 90%, and 99% quantiles are also displayed.

The mean probabilities criterion demonstrates superior per-
formance over the individual component networks across all
the indicators. The majority voting criterion yields equally
good results. Moreover, the consensus threshold criteria en-

hance the recall on the collision class, albeit with a trade-off
of reduced precision.

D. Characterizing and documenting different systems

Fig. [§] demonstrates the discrepancies between the systems
being tested and illustrates how the model (Z)) can differentiate
between various systems in the logical scenario. We can
consider (Z) as a snapshot of the system, which can be stored
for immediate use and future documentation (specifically, to
track the system’s updates over time).

Some major differences can be explained as follows.

Compared to the other systems, the IDM, which only
controls the vehicle’s speed and looks at the front of the
vehicle, cannot avoid rear-end collisions (d < 0). On the other
hand, the other systems can avoid such collisions by changing
lanes.

Upon closer examination, the IDM seems to be more
effective at avoiding front-end collisions, but this is because it
does not have a realistic model of the longitudinal controller
that slows the vehicle’s response.

For the Codriver and the Motion Planner, when the ob-
stacle’s deceleration is a = —3m/ s2, the collision interval
shifts forward as the time 7" taken for a lane change increases.
This is because the deceleration affects the entire lane change

Majority voting Consensus (10/100) Consensus (1/100)
(&) c (7)) (&) c (7)) (&) c (7))
cl 288 15 6 1309 cl 307 1 1 1309 cl 309 0 0 1309
[2] [2] [23
3 3 3
- nf 20 146 56 (222 = nf 55 116 51 {222 = np 111 67 44 1992
© © ©
S 6 8 1082 st 29 6 si 62 5 1082
< (o] o -~ (22] (@] Al N (@]
~ © (32] ()] N (@] [o0] M~ Te]
(42] ~ — [sp] ~ o < o

predicted class

predicted class

predicted class

Fig. 10. Codriver new test set. Confusion matrices for the majority voting aggregation algorithm (Section [[V-C2) and for the consensus
threshold algorithm for respectively no/K = 10/100 and no/K = 1/100

Individual networks

Mean (SD) Mean probabilities

Majority voting

Consensus (ng/K = 10/100) Consensus (ng/K = 1/100)

Accuracy 0.912 (0.008) 0.931 0.931 0911 0.862

Recall (collision) 0.901 (0.019) 0.929 0.932 0.994 1.

Precision (collision) 0.895 (0.018) 0.917 0.917 0.785 0.641
TABLE 11

PERFORMANCE INDICATORS OF INDIVIDUAL NETWORKS AND ENSEMBLE MODELS

time, resulting in a greater overall reduction of the obstacle’s
spee

Also, in the top row, the Motion Planner has more near-
misses for forward collisions due to less efficient prediction
of obstacle paths compared to the Codriver.

When the obstacle acceleration is zero (bottom row), the
interval in which collisions can occur shifts backward and
becomes smaller as the time taken for a lane change increases.
In this scenario, a larger value of 7" allows more time for the
system to slow down and prevent hitting the obstacle from
behind.

The best-performing agent may vary across different parts
of the scenario. For instance, when the obstacle moves at a
constant speed (bottom row), the Motion Planner is better at
avoiding close rear-end collisions. This can be explained by
the fact that the Codriver is strictly prohibited from exceeding
the speed limit and brakes when a close obstacle completely
inhibits its “motor space” [45 Section II-C-5].

E. Caveat

The modeling technique described so far relies on the ability
of neural networks to generalize to new data. However, it’s
important to use a sufficient number of training examples
to avoid losing model resolution. Equation (3) defines the
average density of the sampling points used to build the model,
indicating the model’s ability to resolve details. For example,

"TOne potential objection is that this result occurs because we use the
parameter 7' to represent the duration of both the deceleration and the lane
change. If we were to use a separate parameter, such as g, to model the
deceleration time, we would be separating the speed variation from the lane
change time. However, this approach would require the use of a 6-dimensional
logical scenario.

if there’s a small region that isn’t sampled, the model will
overlook it. This could also occur if the critical region is just
beyond the edge of the logical scenario.

More realistically, if an interesting region receives very few
samples, the trained networks will tend to smooth and overlook
a few samples, depending on the regularization technique used
in training. To check if this is happening, we can monitor
where the misclassified points occur. If they are in areas of
full agreement, it suggests insufficient resolution.

If we don’t know where the critical regions are, uniform
sampling is the best choice (as we did). If we have expert or
data-driven knowledge, then a non-uniform sampling of the
logical scenario can be used. We can also refine the sampling
where insufficient resolution is found.

VII. APPLICATIONS

The stochastic model developed in this paper has various
applications (latest block of Fig. [), including offline and
online uses. Offline applications are carried out while the
system is not in operation and involve system evaluation and
malfunction diagnosis. Online applications are carried out in
parallel with system’s operation and focus on supervising
system operation, monitoring risks, and providing preventive
safety recommendations. We describe here the three possible
applications introduced in Fig. [} Safety assessment (VII-A),
Failure Analysis and Safe Speed Advisor as an exam-
ple of Self Driving Agent Enhancements (VII-C).

A. Safety assessment for hypothetical risks

The ensemble model (Z) describes the performance of a
system across a given logical scenario 2 (Table [[), regardless

Fast ahead driver missing to
check the rearview mirror.
Naturalistic lane change.

Slow ahead driver missing to
check the rearview mirror.
Naturalistic lane change.

Fast ahead driver missing to
check the rearview mirror.
Extreme lane change.

Codriver Codriver Codriver
g S000 g 20000 g 15000
= [0 Consensus threshold (ng=1) =] Consensus threshold (ng=1) = [J Consensus threshold (ng=1)
s 4000 E Majority voting E 15000 Majority voting é E Majority voting
I3 o
= =] £ 10000
& 3000 g &
2 R g
2 Z 10000 2
3 2000 3 2
: £ son
5 0 0 5000 0 0
£ 1000 i H
: £ 5
“ 0 J o7 “ o -
0 16 28 40 3840 0 22 28 40
Leading distance, d(m) Leading distance, d(m) Leading distance,d(m)
Motion Planner Motion Planner Motion Planner
g 5000 § 20000 g 15000
= [Consensus threshold (ng=1) =] Consensus threshold (n9=1) = [l Consensus threshold (ng=1)
?‘, 4000 [Majority voting E 15000 [Majority voting g H Majority voting
i3 o
4 & £110000
2 3000 2 2
2 2 S
= Z 10000 2
S 2000 3 s
%, % 933 % 5000
% 1000 g 0 g 500 1 3 3 a
g g g
z 0 L 2 0 = 0
0 5 29 40 0 40 0 27 37 40

Leading distance,d(m)

Leading distance, d(m)

Leading distance, d(m)

Fig. 11. Risk assessment under three hypotheses: 1) The driver fails to check the rearview mirror, travels ahead and faster than the ego, and
changes lanes with naturalistic parameters. 2) Similar to hypothesis 1, except the driver travels slower than the ego. 3) Similar to hypothesis
1, but with extreme lane change parameters. The most alarming condition arises when the merging vehicle travels slower than the ego.

of the probability of points €) to occur in driving
situations.

The model (Z)) can be subsequently used to assess a system’s
performance in relation to various hypothetical risks or events.

A hypothetical risk 7 can be defined as a subset of the logical
scenario €; C 2, which represents conditions that could
occur under certain hypotheses, such as, e.g., misbehavior
by another road user. To fully describe risk ¢, we need to
know the probability of a specific condition x € §2; to occur
(pi(x), x € Q,); for instance, derived from naturalistic driving
data or observed situations.

If p;(x) is available, the system’s performance, for example
the probability of collision p. ;, can be computed as follows:

Pos = / pi(@)pe(®) dz)

where p.(x) indicates the probability that the state & causes
a collision: p.(x) is evaluated with one of the aggregation
criteria given in Section For example, using consensus

threshold (@):
pela) = {

where n.(x) is the number of bootstrapped models predict-
ing collision (Fig. [2).

Other definitions are possible. For example, p.(x)
ne(x)/K would define the probability of collision to be
proportional to the number of votes. However, (8) incorporates

1 ne(x) >ng

0 ne(x) <ng ®)

error margins defined by threshold ny/K and may thus be
preferred.

Integration via Monte Carlo sampling: We may encounter
inefficiency when using a numerical integration algorithm
for the majority voting and the consensus threshold
(IV-C3)) aggregation criteria due to the discontinuous nature
of the function p.(x). To address this, we can estimate the
integral in equation (7)) using the Monte Carlo method. In this
approach, we generate a large number N of sample points
x; that follow the distribution p;(x), denoted as x; ~ p;(x),
and then proceed to count the number of collisions evaluating
pe(x;) with the model, e.g., with (8):

1 N
DPe,i ~ N ch(mz)

=1

©

This approach is feasible because the calculation of batches
of p.(x;) with the model @) is very rapid, as previously
mentioned (Section [[V-B).

The convergence of (9) can be easily tracked as N in-
creases. In practical terms, the computation of (E[) with
N = 1,000, 000 takes approximately 32 seconds on an Apple
Silicon M1 processor, and the estimated summation stabilizes
after the initial 10.000 points.

Dealing with unknown distributions: Frequently, we do not
have the probability distribution p; () available. However, we
can still use the information about §2; to determine if 2; is free
from collisions with a certain level of confidence. One way

to do this is by generating a uniform distribution of sample
points @;. The outcomes from equation (9) will then indicate
the portion of §2; that is not collision-free.

We present three examples showcasing the flexibility of
model in assessing various hypothetical risks.

Example 1. Driver missing to check the rearview mirror,
ahead and faster than ego, with naturalistic lane change
parameters: In this scenario, the hypothetical risk involves
a driver making a sudden lane change without being aware
of his/her surroundings, for instance, if he/she fails to check
the rearview mirror. However, aside from this mistake, we
assume that the driver changes lanes with naturalistic driving
parameters. Hence, the subdomain 2; may be delimited as
follows:

« vg spans the whole range given in Table [[}

e U1 > g (a slower obstacle will be another example), i.e.,
vy —wg € [0,7m/s ;

e d > 0, 1i.e., the obstacle is ahead (we ditch the cases where
the driver initiates the lane change behind ego because
he/she would be aware of ego);

« the lane change time 7' follows naturalistic driving dis-
tributions. More precisely, [51, Table 4] suggests that the
median lane change time is 5.1 s and that 85% of all lane
changes last more than 4 s. Hence, we set T" > 4s.

o the deceleration a follows naturalistic driving distribu-
tions. More precisely, [52, Table 4] suggests that 0.9
quantiles of longitudinal acceleration (for speed range
40 — 70km/h) happen in the interval —1.72,1.13m/s?.
Hence, we set a € [—1.72,1.13]m/s?

After sampling ©; with 1 million uniformly distributed
points, we obtained the histogram on the left column of Fig.
which shows the collision count for distance bins of 1
meter. Collisions are counted according to the majority vote
and the consensus threshold (ng = 1) criteria. Collisions may
or may not happen within the same distance bin depending
on the values of the other four logical scenario parameters
(the number of cases per bin is 40.00, but there are much
fewer collisions per bin). The Codriver agent has higher
collision rates because the longitudinal control is limited in
jerk. Conversely, the motion planner is quicker at changing the
longitudinal acceleration. Despite different evasive capacities,
they reach zero collision rate at the same distance.

Example 2. Same as example 1, but with a slower obstacle:
In this example, the hypothetical risk is the same as in Exam-
ple 1, but the obstacle’s velocity is slower than the ego vehicle.
), is the same as €y, except that v; — vg € [—5,0lm/s.
The corresponding collision counts are shown in the second
column of Fig[TT] Compared to the first column, it is clear
that a slower obstacle poses a higher risk. Furthermore, the
maximum danger occurs some meters ahead (closer obstacles,
being slower, may pass behind the ego vehicle).

It is important to note that the Motion Planner exhibits a
bimodal behavior and does not achieve zero collision rate up to
40 m leading distance. This is consistent with the reduced safe
regions observed in Fig. [§] (top, right). This occurs because the

Codriver has a better prediction of obstacle trajectories when
they are not moving at a constant speed.

Example 3. As in example 1, but with the obstacle per-
forming extreme lane change maneuvers: In this scenario,
the hypothetical risk is similar to that in Example 1, except
that the lane change duration is in the range of T € [2,4]s
(the 15 percentiles not included in Example 1, [51, Table 4]),
and the longitudinal acceleration spans a broader range of
a € [—4.77,3.25)m/s? [52, Table 4]. Compared to the first
column of Fig. using higher accelerations or faster lane
changes is less dangerous than when the obstacle is already
slow. The safe distance is not significantly affected by the
Codriver and is slightly affected by the Motion planner.

The three examples above demonstrate how the modeling
technique developed in this paper can be utilized to formulate
various hypotheses about potential risks, understand the factors
that have the greatest impact on safety, and highlight the
different performances of various systems (which could be the
same system at different stages of development). Moreover,
breaking the risks down into individual components reveals
that a system’s performance is more complex than can be
expressed with a single number and varies depending on the
perspective from which the system is being considered.

B. Failure analysis via exploration of the collision boundary

In previous examples, we have seen how to evaluate a
system’s performance in various risk scenarios. However,
there may be situations where designers need to provide
explanations for system failures or determine if certain changes
can enhance performance. This type of analysis may involve a
detailed, step-by-step offline review of the sequence of events
and decisions within the systems and is typically conducted
in a limited number of cases. The model can assist in
identifying and prioritizing the most significant cases and
monitoring the system’s progress following updates.

The workflow is as follows:

« Identify a reduced number of points regularly spaced on
the boundary of the collision regions.

« Simulate these points and cluster the resulting trajectories.

« Analyze one example per cluster (the same failure mode
likely causes similar trajectories).

o After the system’s update, train a new model for doc-
umentation and check for regions where the system
improved and areas where the system worsened.

In the following example, we present the first two steps for
the Codriver agent.

Sampling the boundary of collision regions: The boundary
of collision regions is a 4-dimensional manifold. We can
easily find points close to the boundary by randomly sampling
the logical scenario. Since the computation of model is
extremely fast, we can evaluate millions of points without the
need for more sophisticated algorithms.

Near—miss trajectories

i«##wﬂ*-ﬂ\a
’E\ 0 5
: 17
'.l
st —————— =a
-40 -20 20 40
X (m)
Cluster 2 Cluster 7 Cluster 9 o “rY
|
(I -
— '\7"\\'
Cluster 11 = 2 Cluster 16 Cluster 18
"~
[™

Fig. 12. Failure mode analysis: The logical scenario is sampled using model 2] to identify near-miss events close to the collision boundary.
These events are then clustered to reveal a small number of potential failure modes that can be replayed offline by designers.

To find candidates lying close to the boundary, we use the
decision criterion in[[V=C1l The collision class is characterized
by p. > max(py,, Ps), meaning that the aggregated probability
of collision p, is the largest one.

The collision boundary is defined by p. — max(p,, ps) = 0.
Thus, the samples x; are sorted according to the function
f(x) = |pe(x) — max(p(x), ps(x))|- In the example given
here, we sampled the logical scenario with Ny = 1,000, 000
points and retained N, = 2000 points, where —0.011 <
f(=z;) < 0.011.

We still have too many candidates, and they are not evenly
distributed on the boundary. There are more points where the
gradient of f(x) is smaller and fewer where the gradient
is higher. So, we use the k-means algorithm to cluster the
Ny points around common centroids. We specify the number
of clusters as N3 = 200, and then take the corresponding
centroid, effectively reducing the number of candidates by
tenfold. The sample size is hence reduced to N3 = 200 points,
which are now more evenly distributed near the boundary.
After simulations, among these initial points, 57 produce a
nearly-miss event, and we focus on them as they are more
informative than the collisions. The trajectories in an ego
reference frame are shown in the top image of Fig. [I2]

Clustering the near-miss trajectories: To categorize differ-
ent types of failures, near-miss trajectories can be grouped
using the mean-shift clustering algorithm, resulting in 19
different clusters, of which the most noteworthy are depicted
in Figure [12] at the bottom.

A replay of one example per cluster gives the following
insights. Cluster 2 involves a scenario where the merging
vehicle comes to a complete stop, blocking the Ego vehicle
between the obstacle and the right lane edge. Clusters 7 and
9 showcase the ego vehicle changing lanes either in front of
or behind the obstacle, whose final position is on the right. In
cluster 11, a quick-moving obstacle narrowly passes the Ego

vehicle on the left. Clusters 16 and 18 illustrate two potential
rear-end collisions, which are avoided by the Codriver’s lane
change maneuver.

d 141
~—
[
Vo L

Ve

Fig. 13. Exit scenario

C. Safe Speed Advisor

The model is fast enough to be used in online appli-
cations. For instance, it can assess the safety of the current
state and, if the current state is unsafe, suggest a nearby safe
state. In online applications, the logical scenario parameters
are generally well-known.

Let’s take the scenario shown in Figure [13| as an example.
The velocities of the obstacle (v1), the ego vehicle (vg), and
the distance to the obstacle (d) are known. By considering the
risks outlined in examples and for instance, the
possibility of the obstacle driver to take an exit without being
aware of the ego vehicle, it is feasible to estimate plausible
values for the lane change duration (7") and deceleration (a)
based on the obstacle velocity (v;), the exit ramp speed limit
(ve), and the distance to the exit ramp (L). This enables the
assessment of whether the current state is safe in relation to
the hypothetical risk.

If the current state is not safe, we can recalculate by
adjusting the ego vehicle’s velocity to find a safe speed. Figure

Codriver

142 20.3
2
Consensus threshold (ng=1)
_ vi =237 mis g W Majority voting
N §
ey 2
\5 \%; s
8 l:l : g
; a =—1.1m/s* k]
T =255s &
vo =19.7 m/s d =-109m ©
[' A
10. 21.3 25.
Leading distance, d(m)
Codriver
14. 21.7
2
Consensus threshold (np=1)
X vi =18. mis g W Majority voting
o, £
) K g
- [=
¢ ke
7 a =-3.57 m/s? =
T =216s 3
vo =19. m/s d=223m ©
0,
10. 129 25.

Leading distance, d(m)

Fig. 14. Online speed recommendation: Safety is evaluated with (2)
to discover safe speed intervals considering the current situation.

[T4] provides two examples (extracted from the collision events
of Section [VII-C).

In the top example, the obstacle is faster, resulting in a rear-
end collision. The chart on the right illustrates the collision
prediction using two aggregation criteria. Importantly, to be
safe for rear-end risks, the ego vehicle should be traveling at
a speed exceeding 21.3m/s.

In the bottom example, the obstacle is slower. In this case,
safe speeds are those below a certain threshold (12.9m/s).

VIII. CONCLUSIONS

The approach described in this paper involves capturing a
snapshot of a system within a specific logical scenario. Using
bootstrapping aggregation, we develop a model that tracks its
accuracy. This model can be applied to online and offline
applications, as demonstrated by three examples. It can also be
used to monitor the progress of system design, ensuring that
updates lead to improvements without introducing new failure
modes.

Regarding safety assessment on a broader scale, we would
like to comment on some key points. Firstly, it needs to
be clarified how many functional and logical scenarios are
necessary to cover a complex operational design domain
(ODD) comprehensively. According to Kalra, billions of miles
must be driven to evaluate a vehicle’s safety statistically. Thus,
the question arises - how many functional and logical scenarios
are required for safety assessment? Secondly, translating a
functional scenario into various logical scenarios implies that a
finite-parameter and finite-symbol scheme is used to represent
an infinite number of possibilities. This approach implicitly
subscribes to the Cartesian model (representations with amodal
symbols), effectively testing safety within a subset of reality.
The limitations of the Cartesian model in relation to situations
that cannot be described within the given parameters and
symbols are discussed in [49]. Thirdly, an essential aspect

of safety argumentation is coverage analysis. The model 2]
operates as a continuous function across the logical scenario
and can be leveraged, with the caveat in Section|VI-E]} to assess
system performance throughout the entire logical scenario.
However, the issue of whether a functional scenario is ade-
quately covered by a collection of logical scenarios remains.
To address this, we could apply the modeling methodology
from this paper to alternative logical scenarios to determine if
alternative parameters are better or necessary. Nevertheless,
this increases the number of scenarios to be studied and
conflicts with Kalra’s argumentation. Additionally, we cannot
confirm whether any logical scenarios have been omitted at
this stage, as this can only be addressed at the level of (data-
driven) scenario generation.

IX. CONTRIBUTION OF THE AUTHORS

Antonello Cherubini developed the Case Study (Section [V)
and the initial version of the analysis of the trained model
(Section |V_I|) which included a simplified three-dimensional
logical scenario. Gastone Pietro Rosati Papini studied the op-
timal neural architecture (Appendix [A)) and contributed to the
analysis of its performance (Section [VI). Alice Plebe studied
the State of the Art (Section , which included evaluating
the performance of literature surrogate models on the logical
scenario presented in this paper. Mattia Piazza developed the
IDM and the Motion Planner agents (the Codriver was pre-
existing). Mauro Da Lio is the group leader. He contributed
to the methodology (Section [IV), the final version of the
analysis of the trained model (Section[VI), and the applications
(Section [VII).

The authors collectively discussed the study, and all shared
a common opinion on the positions expressed.

Mauro Da Lio carried out the final text editing. Grammarly
was used for proofreading and for improving clarity.

APPENDIX A
NEURAL NETWORK ARCHITECTURE AND
HYPERPARAMETER OPTIMIZATION

This appendix explains our decisions regarding the im-
plementation of neural networks and the specific training
methods. We begin by discussing the rationale behind selecting
the dataset size and then proceed to determine: i) The structure
of the neural network and the most appropriate learning rate
(Appendix [A-A), ii) How to properly divide the dataset into
training, validation, and test sets (Appendix [A-B)), iii) The
selection of the number of models for the bootstrapping
strategy (Appendix [A-C).

The dataset size derives from allocating one full day for
simulations that resulted in 5000 simulations. Subsequently,
following the considerations explained in Section [VI-E| we
found that this number adequately covers all conditions of the
logical scenario.

A. Structure of the network and learning rate

In order to optimize the predictive abilities of the networks
in the specific operational setting, we studied several fully
connected neural architectures. We varied the number of

layers, the number of neurons in each layer, and the activation
function to find the best combination.

Additionally, we studied the learning rate, a parameter that
significantly affects the network’s performance.

The optimization process involves two rounds: in the first
round, we determine the optimal learning rate and the most
promising shallow structure. In the second round, we studied
architectures with varying numbers of hidden layers.

The selection of the network architecture was based on the
Akaike Information Criterion (AIC) [53]]. The Akaike Infor-
mation Criterion penalizes models based on their degrees of
freedom, indicating the model with the best trade-off between
predictive capacity and a minimum number of parameters.

We decided to use ADAM as the optimizer for training
because of its adaptive learning rate. We used a batch size
of 64 to introduce a good level of randomness while still
allowing for quick training. The number of epochs was set to
5000 to make sure that the model converges, but we also set a
stopping criterion of 200 epochs if no improvement is observed
in the validation set. The loss function used was the cross-
entropy. Each network was trained three times with random
initialization to ensure the reliability of the AIC evaluation.

Figure (15| shows the (natural logarithm) Log(AIC) values
obtained for the two rounds of optimization for all the con-
sidered network architectures and learning rates. Lower AIC
values indicate better performance.

In the figure, each network is labeled with hidden layers,
which are the only ones that vary. All the considered networks
have the same last layers, consisting of 3 neurons and a
softmax activation function, which allows for generating a
probability distribution across the three output classes con-
sidered.

In Round 1, the shallow structure with the lowest AIC is
the “40 Tanh”, trained using a learning rate of 0.001. The final
network selected in Round 2 has the structure “20 Tanh 10
Tanh”.

B. Train-validation-test split methodology

In this section, we determine the best ratio for dividing the
dataset for training and validation while keeping the test set
at 20% (maintaining this size for the test set helps us evaluate
performance more reliably, as reducing the test set further can
make the evaluation unstable). Hence, we considered differ-
ent partition ratios: 50:30:20 (train:validation:test), 55:25:20,
60:20:20, 65:15:20, 70:10:20, and 75:5:20. For each of these,
we trained the network selected in Round 2, called 20 Tanh
10 Tanh”, 10 times to calculate the average accuracy and its
variance. The same stopping criterion used in the previous
section was applied to the validation set.

The results show that as the size of the training set increases,
the accuracy remains constant, but the variance of the accuracy
in the validation set increases. A high variance in the validation
set can negatively affect the overall performance. Therefore,
we choose the 60:20:20 proportions.

C. Number of bootstrapped models and model robustness

With the above selected network structure and learning
rate (10 Tanh 20 Tanh”, 0.001), we trained 150 networks

with 60:20:20 data partition ratio. The training followed the
bootstrapping strategy known as “split and train” [7]].

A stochastic model, similar to the one shown in Fig. [2| was
created by randomly selecting (with repetitions) a number,
K, ranging from 5 to 150, from a total of 150 networks.
This process was repeated 10 times for each value of K. The
mean and standard deviation across the K networks were then
calculated for the three classes probabilities. In Fig. the
standard deviation (the mean of the standard deviation of the
three classes) is displayed as K increases. The BoxWhisker
chart illustrates the variation in the ten different extractions.
With increasing K, the output variability becomes more stable.
A value of K = 100 was selected as a good compromise for
the number of bootstrapped models.

REFERENCES

[11 N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182—
193, 2016.

[2] J. Sun, H. Zhou, H. Xi, H. Zhang, and Y. Tian, “Adaptive design
of experiments for safety evaluation of automated vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp.
14497-14 508, 2021.

[3] J. Sun, H. Zhang, H. Zhou, R. Yu, and Y. Tian, “Scenario-based test
automation for highly automated vehicles: A review and paving the
way for systematic safety assurance,” IEEE transactions on intelligent
transportation systems, vol. 23, no. 9, pp. 14 088-14 103, 2021.

[4] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers of Computer Science, vol. 14, no. 2, pp. 241-258,
Apr. 2020.

[5] 1. D. Mienye and Y. Sun, “A survey of ensemble learning: Concepts,
algorithms, applications, and prospects,” IEEE Access, vol. 10, pp.
99 129-99 149, 2022.

[6] B. Efron and R. Tibshirani, An introduction to the bootstrap. New
York: Chapman & Hall, 1994.
[71 U. Michelucci and F. Venturini, “Estimating neural network’s

performance with bootstrap: A tutorial,” Machine Learning and
Knowledge Extraction, vol. 3, no. 2, pp. 357-373, 2021. [Online].
Available: https://www.mdpi.com/2504-4990/3/2/18
[8] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer,
“Survey on scenario-based safety assessment of automated vehicles,”
IEEE access, vol. 8, pp. 87456-87477, 2020.
[9] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” arXiv preprint arXiv:1708.06374,
2017.
M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903-918, 2014.
B. Johnson, F. Havlak, H. Kress-Gazit, and M. Campbell, “Experimental
evaluation and formal analysis of high-level tasks with dynamic obstacle
anticipation on a full-sized autonomous vehicle,” Journal of Field
Robotics, vol. 34, no. 5, pp. 897-911, 2017.
T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development,
test and validation of automated vehicles,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). 1EEE, 2018, pp. 1821-1827.
Y. Wang, R. Yu, S. Qiu, J. Sun, and H. Farah, “Safety performance
boundary identification of highly automated vehicles: A surrogate
model-based gradient descent searching approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 12, pp. 23 809-23 820,
2022.
S. Thal, H. Znamiec, R. Henze, H. Nakamura, H. Imanaga, J. Antona-
Makoshi, N. Uchida, and S. Taniguchi, “Incorporating safety relevance
and realistic parameter combinations in test-case generation for au-
tomated driving safety assessment,” in 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC). 1EEE, 2020,
pp. 1-6.
H. Zhang, J. Sun, and Y. Tian, “Accelerated safety testing for highly
automated vehicles: Application and capability comparison of surrogate
models,” IEEE Transactions on Intelligent Vehicles, 2023.

[10]

(1]

[12]

[13]

[14]

[15]

https://www.mdpi.com/2504-4990/3/2/18

T T T T T T T T T r r
20 Tanh & Learning rate = 0.1
40 Tanh Hk
80 Tanh —
160 Tanh ‘I
320 Tanh — -
20 Elu -
40 Elu
80 Elu =
160 Elu =
320 Elu — —
20 Sigmoid
40 Sigmoid HHk
80 Sigmoid |
160 Sigmoid &
320 Sigmoid i
20 Tanh k¥ = =
40 Tanh (mm- Learning rate = 0.01
80 Tanh (W
160 Tanh -}
320 Tanh #k
e 20 Elu =
2 40 Elu ¢
3 80 Elu i
3 160 Elu 4
320 Elu
20 Sigmoid ik
40 Sigmoid ¥
80 Sigmoid
160 Sigmoid ‘A
RETI) 320 Sigmoid
an i =
40 Tanh I Learning rate = 0.001
80 Tanh 1M
160 Tanh ik
320 Tanh #
20 Elu i
40Elu H H
80 Elu
160 Elu =
320Elu im
20 Sigmoid 1!
40 Sigmoid —mi
80 Sigmoid 1
160 Sigmoid ®
320 Sigmoid |
TO Tanh 3
10 Tanh 10 Tanh Tl Learning rate = 0.001
10 Tanh 10 Tanh 10 Tanh ‘EEE-
10 Tanh 20 Tanh W
10 Tanh 20 Tanh 20 Tanh -
20 Tanh -k
o 20 Tanh 20 Tanh #m
2 20 Tanh 20 Tanh 20 Tanh =
3 20 Tanh 40 Tanh
[3 20 Tanh 40 Tanh 40 Tanh =k
40 Tanh #
40 Tanh 40 Tanh ¢
40 Tanh 40 Tanh 40 Tanh *
80 Tanh = =
80 Tanh 80 Tanh *
80 Tanh 80 Tanh 80 Tanh !
1 I 1 1 I 1 1 1 I 1 1
2000 5000 1x10% 2x10*
Log(AIC)

Fig. 15. Value of Log(AIC) for all the examined network architectures and learning rates. Round 1 analyzes the learning rate and the shallow
architectures. Round 2 analyzes deep architectures. The chosen network is the 10 Tanh 20 Tanh.

0.040}

0.035

Standard Deviation

0.030

0.025

T O T Y S T S E SO Y R N
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125130135140145150
of Models

Fig. 16. Box whisker plot of the standard deviation of the class proba-
bilities in a model with K networks. As the number of bootstrapped
models K increases, the distribution of probabilities estimated by
model (@), Fig. 2] becomes stable.

[16] S. Zhang, H. Peng, D. Zhao, and H. E. Tseng, “Accelerated evaluation
of autonomous vehicles in the lane change scenario based on subset sim-

[17]

[18]

[19]

[20]

[21]

[22]

(23]

ulation technique,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). 1EEE, 2018, pp. 3935-3940.

D. Asljung, C. Zandén, J. Fredriksson, and M. K. Vakilzadeh, “On
automated vehicle collision risk estimation using threat metrics in sub-
set simulation,” in 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC). IEEE, 2021, pp. 58-63.

G. Bagschik, T. Menzel, and M. Maurer, “Ontology based scene creation
for the development of automated vehicles,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). 1EEE, 2018, pp. 1813-1820.

R. Krajewski, T. Moers, D. Nerger, and L. Eckstein, “Data-driven ma-
neuver modeling using generative adversarial networks and variational
autoencoders for safety validation of highly automated vehicles,” in 2018
21st International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2018, pp. 2383-2390.

G. De Nicolao, A. Ferrara, and L. Giacomini, “Onboard sensor-based
collision risk assessment to improve pedestrians’ safety,” IEEE transac-
tions on vehicular technology, vol. 56, no. 5, pp. 2405-2413, 2007.

D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa,
and C. S. Pan, “Accelerated evaluation of automated vehicles safety in
lane-change scenarios based on importance sampling techniques,” IEEE
transactions on intelligent transportation systems, vol. 18, no. 3, pp.
595-607, 2016.

R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset:
A drone dataset of naturalistic vehicle trajectories on german highways
for validation of highly automated driving systems,” in 2018 2Ist
international conference on intelligent transportation systems (ITSC).
IEEE, 2018, pp. 2118-2125.

A. Blatt, J. Pierowicz, M. Flanigan, P-S. Lin, A. Kourtellis, C. Lee,
P. Jovanis, J. Jenness, M. Wilaby, J. Campbell et al., “Naturalistic driving

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

study: Field data collection,” Transportation Research Board, Tech. Rep.,
2015.

I. R. Jenkins, L. O. Gee, A. Knauss, H. Yin, and J. Schroeder, “Accident
scenario generation with recurrent neural networks,” in 2018 2Ist
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 3340-3345.

Y. Xu, Y. Zou, and J. Sun, “Accelerated testing for automated vehicles
safety evaluation in cut-in scenarios based on importance sampling,
genetic algorithm and simulation applications,” Journal of intelligent
and connected vehicles, vol. 1, no. 1, pp. 28-38, 2018.

C. Amersbach and H. Winner, “Defining required and feasible test
coverage for scenario-based validation of highly automated vehicles,”
in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
IEEE, 2019, pp. 425-430.

M. Althoff and S. Lutz, “Automatic generation of safety-critical test
scenarios for collision avoidance of road vehicles,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). 1EEE, 2018, pp. 1326-1333.

M. Klischat and M. Althoff, “Generating critical test scenarios for auto-
mated vehicles with evolutionary algorithms,” in 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2019, pp. 2352-2358.

M. Klischat, E. I. Liu, F. Holtke, and M. Althoff, “Scenario factory:
Creating safety-critical traffic scenarios for automated vehicles,” in
2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). 1EEE, 2020, pp. 1-7.

C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing s-taliro as an
automatic test generation framework for autonomous vehicles,” in 2016
ieee 19th international conference on intelligent transportation systems
(itsc). IEEE, 2016, pp. 1470-1475.

C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-
based adversarial test generation for autonomous vehicles with machine
learning components,” in 2018 IEEE Intelligent Vehicles Symposium
(IvV). IEEE, 2018, pp. 1555-1562.

S. Srikanthakumar and W.-H. Chen, “Worst-case analysis of moving
obstacle avoidance systems for unmanned vehicles,” Robotica, vol. 33,
no. 4, pp. 807-827, 2015.

N. E. Chelbi, D. Gingras, and C. Sauvageau, “Worst-case scenarios
identification approach for the evaluation of advanced driver assistance
systems in intelligent/autonomous vehicles under multiple conditions,”
Journal of Intelligent Transportation Systems, vol. 26, no. 3, pp. 284—
310, 2022.

L. Xu, C. Zhang, Y. Liu, L. Wang, and L. Li, “Worst perception scenario
search for autonomous driving,” in 2020 IEEE Intelligent Vehicles
Symposium (IV). 1EEE, 2020, pp. 1702-1707.

J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Improving the robustness
of an mpc-based obstacle avoidance algorithm to parametric uncertainty
using worst-case scenarios,” Vehicle System Dynamics, vol. 57, no. 6,
pp. 874-913, 2019.

M. Koschi, C. Pek, S. Maierhofer, and M. Althoff, “Computationally
efficient safety falsification of adaptive cruise control systems,” in 20719
IEEE Intelligent Transportation Systems Conference (ITSC). 1EEE,
2019, pp. 2879-2886.

S. Masuda, H. Nakamura, and K. Kajitani, “Rule-based searching for
collision test cases of autonomous vehicles simulation,” IET Intelligent
Transport Systems, vol. 12, no. 9, pp. 1088-1095, 2018.

W. Ding, B. Chen, M. Xu, and D. Zhao, “Learning to collide: An
adaptive safety-critical scenarios generating method,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 2243-2250.

A. Calo, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa, “Generating
avoidable collision scenarios for testing autonomous driving systems,”
in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST). 1EEE, 2020, pp. 375-386.

A. Bhosekar and M. lerapetritou, “Advances in surrogate based mod-
eling, feasibility analysis, and optimization: A review,” Computers &
Chemical Engineering, vol. 108, pp. 250-267, 2018.

P. M. Junietz, “Microscopic and macroscopic risk metrics for the
safety validation of automated driving,” Ph.D. dissertation, Technische
Universitit Darmstadt, 2019.

S. S. Mahmud, L. Ferreira, M. S. Hoque, and A. Tavassoli, “Application
of proximal surrogate indicators for safety evaluation: A review of recent
developments and research needs,” IATSS research, vol. 41, no. 4, pp.
153-163, 2017.

“Cut in crash recorded by dashcam,” May 2024, accessed
June 10th 2024. [Online]. Available: https://www.instagram.com/|
reel/C6Cl15uqH4x/?1gsh=MThiZnhtdnBtOHkwMA %3D%3D

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

“IPG CarMaker, professional simulation solution,” https://ipg-
automotive.com/en/products-solutions/software/carmaker/, last accessed
Jan 2024.

M. Da Lio, R. Dona, G. P. Rosati Papini, and K. Gurney, “Agent ar-
chitecture for adaptive behaviors in autonomous driving,” IEEE Access,
vol. 8, pp. 154906-154 923, 2020.

M. Piazza, M. Piccinini, S. Taddei, and F. Biral, “Mptree: A sampling-
based vehicle motion planner for real-time obstacle avoidance,” IN
PROCEEDINGS IFAC Proceedings Volumes, 2024.

K. Kreutz and J. Eggert, “Analysis of the generalized intelligent driver
model (gidm) for merging situations,” in 2021 IEEE Intelligent Vehicles
Symposium (IV), 2021, pp. 34-41.

P. Cisek and J. F. Kalaska, “Neural mechanisms for interacting with a
world full of action choices,” Annual review of neuroscience, vol. 33,
pp- 269-298, 2010.

M. Da Lio, A. Cherubini, G. P. Rosati Papini, and A. Plebe, “Complex
self-driving behaviors emerging from affordance competition in layered
control architectures,” Cognitive Systems Research, vol. 79, pp. 4-14,
2023. [Online]. Available: https://doi.org/10.1016/j.cogsys.2022.12.007
M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Phys. Rev.
E, vol. 62, no. 2, pp. 1805-1824, Aug. 2000. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.62.1805

Y. Li, L. Li, D. Ni, and Y. Zhang, “Comprehensive survival analysis of
lane-changing duration,” Measurement, vol. 182, p. 109707, 2021.

P. Bosetti, M. Da Lio, and A. Saroldi, “On the human control of vehicles:
an experimental study of acceleration,” European Transport Research
Review, vol. 6, no. 2, pp. 157-170, Jun. 2014.

H. Akaike, “A new look at the statistical model identification,” IEEE
Transactions on Automatic Control, vol. 19, no. 6, pp. 716-723, 1974.

https://www.instagram.com/reel/C6Cl15uqH4x/?igsh=MThiZnhtdnBtOHkwMA%3D%3D
https://www.instagram.com/reel/C6Cl15uqH4x/?igsh=MThiZnhtdnBtOHkwMA%3D%3D
https://doi.org/10.1016/j.cogsys.2022.12.007
http://link.aps.org/doi/10.1103/PhysRevE.62.1805

	Introduction
	Contribution
	Structure of the paper

	Safety Assessment in the Literature
	Scenario-based testing
	Generation of logical scenarios
	Selection of concrete scenarios

	Adaptive search with Surrogate models
	Result evaluation

	Safety assessment in international initiatives
	Methodology
	Implementing the approximant function bold0mu mumu subsection(.)
	Creating an ensemble model via bootstrapping
	Decision (aggregation) algorithms
	Mean probabilities
	Majority voting
	Consensus threshold (n0)

	Creating the original training examples

	Case study
	Training the stochastic predictive model
	Sampling the logical scenario
	Systems under test (SUTs)
	Performance indicators

	Training data and neural model training

	Analysis of the trained models
	Confidence levels
	Generalization capacity of the ensemble model
	Accuracy, Precision and Recall
	Characterizing and documenting different systems
	Caveat

	Applications
	Safety assessment for hypothetical risks
	Failure analysis via exploration of the collision boundary
	Safe Speed Advisor

	Conclusions
	Contribution of the Authors
	Appendix A: Neural Network Architecture and Hyperparameter Optimization
	Structure of the network and learning rate
	Train-validation-test split methodology
	Number of bootstrapped models and model robustness

	References

