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Abstract— Automated Driving Systems (ADSs) have the po-
tential to make mobility services available and safe for all.
A multi-pillar Safety Assessment Framework (SAF) has been
proposed for the type-approval process of ADSs. The SAF
requires that the test scenarios for the ADS adequately covers
the Operational Design Domain (ODD) of the ADS. A common
method for generating test scenarios involves basing them on
scenarios identified and characterized from driving data.

This work addresses two questions when collecting scenarios
from driving data. First, do the collected scenarios cover all
relevant aspects of the ADS’ ODD? Second, do the collected
scenarios cover all relevant aspects that are in the driving data,
such that no potentially important situations are missed? This
work proposes coverage metrics that provide a quantitative
answer to these questions.

The proposed coverage metrics are illustrated by means of an
experiment in which over 200 000 scenarios from 10 different
scenario categories are collected from the HighD data set.
The experiment demonstrates that a coverage of 100% can be
achieved under certain conditions, and it also identifies which
data and scenarios could be added to enhance the coverage
outcomes in case a 100% coverage has not been achieved.
Whereas this work presents metrics for the quantification of
the coverage of driving data and the identified scenarios, this
paper concludes with future research directions, including the
quantification of the completeness of driving data and the
identified scenarios.

I. INTRODUCTION

The road traffic system is changing rapidly, due to changes
in the existing mobility system (e.g., the increasing share of
cycling), the introduction of new mobility systems such as
Connected, Cooperative, and Automated Mobility (CCAM)
systems, shared mobility concepts, and new enabling tech-
nologies such as artificial intelligence and wireless V2X-
communication [1]. Simultaneously, vehicles are increasingly
automated. The goal of automation is to make mobility
services available and safe for all, including vulnerable
road users. At the same time, automation can provide more
comfort to drivers and passengers and increase the efficiency
of the mobility system.

Authorities are being asked to allow vehicles equipped
with new advanced communication and automation technolo-
gies onto public roads. To put a legal framework to the safe
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deployment of Automated Driving Systems (ADSs), regula-
tions are being implemented by the United Nations Economic
Commission for Europe (UNECE), e.g., for Automated Lane
Keeping Systems (ALKSs) [2], and the European Commis-
sion, i.e., for CCAM systems in four use cases [3]. The
UNECE WP.29 Working Party on Automated/Autonomous
and Connected Vehicles (GRVA) has developed the New
Assessment/Test Methods (NATM) Master Document [4], in
which a multi-pillar Safety Assessment Framework (SAF) is
proposed for the type-approval process of CCAM systems.

Though ADSs might be complex, and the assessment
procedure of such systems might be complicated, the as-
sessment results should be unambiguous, easily understood
by experts in the field, and explainable to authorities and the
public. This is one reason that scenarios, as a structured way
to describe the large varieties of situations and conditions
that an ADS may encounter on the road, form the most
important source of information to generate test scenarios for
the different ways of testing: virtual testing using computer
models and simulation tools, track testing under realistic and
reproducible conditions, and real-world tests on the road,
e.g., by means of field operational tests.

A common way of collecting (naturalistic driving) data
for the identification and characterization of scenarios is by
the use of instrumented vehicles driving on public roads [5].
In such data collection efforts, the ego vehicle refers to the
vehicle that is perceiving the world through its sensors or
the vehicle that must perform a specific task. A scenario
describes any situation on the road encountered by the ego
vehicle and how this situation develops over time. A drive
on the road is considered a continuous sequence of scenarios
— which might overlap.

An important characteristic of an ADS is represented by its
Operational Design Domain (ODD), which refers to the “op-
erating conditions under which a given driving automation
system or feature thereof is specifically designed to function,
including, but not limited to, environmental, geographical,
and time-of-day restrictions, and/or the requisite presence
or absence of certain traffic or roadway characteristics” [6].
In other words, the ODD is used to describe the external
environment and conditions for which an ADS system is
designed for. The importance of describing the ODD is
underlined by the different initiatives for specifying an ODD,
e.g., see [7]–[9]. Since scenarios are a description of the
environment of the ADS-equipped vehicle, scenarios can be
used to describe the ODD.

The trustworthiness of the safety assessment results of
an ADS depends on the quality of the selection of test



scenarios, and consequently on determining the range of
scenarios that is relevant for the ADS under assessment.
Hence, trustworthiness depends on how well the underlying
data for scenario identification and collection as well as the
selected set of scenarios cover the ODD. In this paper, we
study metrics to quantify how well observed scenarios cover
an ODD.

Coverage can be measured in multiple ways, which is
why this work presents multiple coverage metrics. The first
coverage metric quantifies whether all relevant aspects of
an ODD — labeled with the use of tags — are captured.
The other coverage metrics measure the coverage of the
data containing scenarios with respect to time, actors, and
a combination of time and actors. To illustrate the use of the
proposed metrics, they have been implemented to determine
the coverage for the StreetWise Scenario Categories (SCs) on
the HighD data set [10]. We demonstrate how the resulting
numbers can be used to determine what data and which SCs
may need to be included for increasing the trustworthiness
of the safety assessment results.

After a short overview of related works in Section II,
the different coverage metrics are introduced in Section III.
Results of the experiment are provided in Section IV. After
discussion of the results in Section V, conclusions are
drawn and recommendations for further research are given
in Section VI.

II. RELATED WORKS

The term “coverage” is informally understood as the
degree to which something deals with something else. For
example, in statistics, the coverage of a confidence interval
of p indicates the actual probability that the confidence
interval contains p [11]. In the field of software engineering,
coverage is “a measure of verification and completeness”
[12] and, as described by Piziali [12], there is no single
(best) way to define coverage. Coverage metrics can be
tailored to the verification progress from the perspective
of the functional requirements of the product (functional
coverage), the part of the code that have been executed during
the verification (code coverage), the fractions of assertions
evaluated (assertion coverage), etc. To illustrate the many
“coverage” metrics, consider the code coverage. The code
coverage can be measured in terms of the lines of codes that
have been executed, the branches or the paths, etc.

In [13], the importance of coverage metrics is emphasized
for the testing of autonomous vehicles, as the authors argue
that testing that inadequately covers the situations that an
autonomous vehicle will encounter is similar to inadequate
testing. Therefore, Alexander et al. [13] have proposed the
use of a “situation coverage metric”. They have suggested
that such a metric should be tractable, which has two impli-
cations. First, a percentage should be calculated. Thus, when
considering an ADS, the number of kilometers driven or the
number of (simulated) scenarios are insufficient examples,
because both can be infinite. Also, the number of failures
found is not a good example, because the total number of

failures is unknown. Second, a 100% coverage should be
achievable under realistic practical conditions.

In the field of testing of ADSs, the term “coverage” is
often used as a measure used to decide the adequacy of
a testing effort and as a stopping criteria for testing [14].
Riedmaier et al. [15] defined the term “scenario coverage”
as the extent to which concrete scenarios used for testing
cover the entire space, without further defining quantitative
measures. In [16], this idea is further exploited as several
metrics are proposed for measuring the coverage of concrete
scenarios with respect to the ODD of an ADS. Note that
given the fact that the number of concrete scenarios is
virtually infinite [17], and following the aforementioned
reasoning of Alexander et al. [13], using concrete scenarios
will not provide a good coverage metric. As an alternative
for concrete scenarios, the types of scenarios or the scenes
may be considered, where a scene refers to the situation at
a single time instant of a scenario. Although Hauer et al.
[18] did not mention the term “coverage”, the metric that
they proposed estimates the number of types of scenarios
that are not addressed during testing. In [19], a coverage
metric is defined using scenes, although no practical results
are presented.

When deriving test scenarios from scenarios observed in
real-world data, the real-world data should provide good cov-
erage. Compared with the amount of literature on coverage
regarding the testing effort of ADSs, there is little literature
available regarding the coverage of the real-world data. In
[20], a criterion is proposed for the collection of naturalistic
driving data. In [21], the asymptotic mean integrated squared
error of an estimated probability density function is used as
a metric to quantify the coverage of the collected data. A
disadvantage of both these works is that a 100% coverage
cannot be achieved. In [22], a metric is proposed based on the
number of distinct sequences of maneuvers of an observed
object. A disadvantage of this metric is that the total number
of distinct sequences is unknown, so a percentage cannot be
calculated. Recently, Glasmacher et al. [23] defined coverage
with respect to a set of scenarios as “the quantifiable extent
to which a set of scenarios or parameters represent a defined
ODD or predefined set of scenarios”, but no metric has been
proposed as [23] focused on completeness instead (more
on that in the discussion of Section V). Glasmacher et al.
proposed a coverage metric based on scenario parameter
values in [24]. However, this approach requires selecting a
parameterization and limiting the number of parameters, as
achieving 100% coverage could be impractical otherwise.
Despite this drawback, their approach is promising and
complements the method presented in this work.

III. COVERAGE METRICS

In this work and in line with [23], coverage is defined as
the degree to which a set of scenarios observed in real-world
data cover an ODD. To further distinguish the metrics that
are proposed later in this section, two types of coverage are
considered, both aiming to answer different questions:



• Type I: Do the collected scenarios cover all relevant
aspects of an ODD?

• Type II: Do the collected scenarios cover all relevant
aspects that are in the driving data?

Four different coverage metrics are proposed. The first metric
is the tag-based coverage, which addresses coverage type
I. The other three metrics, i.e., time-based coverage, actor-
based coverage, and actor-over-time-based coverage, address
coverage type II.

quantifiable extent to which a set of scenarios or parame-
ters represent an ODD

A. Tag-based coverage

Before introducing the tag-based coverage metric, we need
to distinguish scenarios from SCs [25]. Here, a scenario
refers to a quantitative description of the relevant character-
istics of the ego vehicle, its activities and/or goals, its static
environment, and its dynamic environment. In contrast, an
SC refers to a qualitative description of the ego vehicle, its
activities and/or goals, its static environment, and its dynamic
environment. For example, the SC “cut in” comprises all
possible cut-in scenarios. Scenarios may further be enriched
with tags, e.g., a scenario belonging to the SC “cut in” may
have the tag “actor at left” to indicate that there is an actor at
the left side of the ego vehicle that prevents the ego vehicle
from changing lane to the left.

Let L denote a set of tags and let C denote a set of SCs.
Note that the set of tags should be based on the relevant
aspects of an ODD, whereas the set of SCs could be based
on the coverage type II metrics presented in Sections III-
B–III-D. For the tag-based coverage, we make use of the
function N(L,C), which returns the number of scenarios
that belong to SC C and contain the tag L. Continuing
the previous example, in case we have 10 cut-in scenarios
with an actor at the left of the ego vehicle, we would
have N(Actor at left,Cut-in) = 10. The tag-based coverage
metric is defined as follows:

CoverageTag(n) =
1

n|L||C|
∑
L∈L

∑
C∈C

min(n,N(L,C)), (1)

where n ∈ Z+ and |·| denotes the cardinality, e.g., |L| equals
the number of (distinct) tags. In case CoverageTag(1) = 1,
each tag is associated to at least one scenario of each SC.

For this coverage metric, three choices need to be made:
1) The SCs belonging to C. The SCs should cover the

ODD. The set of SCs could be based on relevant
literature [26], [27], though we suggest using other
coverage metrics to justify that the set of SCs is
complete. As mentioned before, the metrics presented
in Sections III-B–III-D may be used.

2) The tags belonging to L. The tags should follow
from the ODD description. When defining the ODD
in accordance with the ISO 34503 standard [7], the
corresponding tags listed in the ISO 34504 standard
[28] may be used.

3) The required number of tags per SC, n. Minimally, n =
1, but to achieve more accurate statistics, if may be

required to choose a higher value for n. To determine
n, other metrics be used, e.g., see [20]–[24].

To obtain more accurate statistics of the scenarios belong-
ing to an SC, it may be desired to have at least several
scenarios of each SC with a certain tag. In that case, a larger
value of n may be chosen.

Note that different tag-based coverage metrics can be
defined if different sets of tags are considered. For example,
one may choose to calculate (1) with L consisting of tags
related to environmental conditions, such as weather and
lighting conditions, and with another set of tags consisting
of scenery attributes, such as different types of roads.

B. Time-based coverage

The time-based coverage metric answers the question of
whether all timestamp in the data is covered by one or more
scenarios. Let T denote the set of all timestamps in the data
set. For the time-based coverage, we introduce the function
M(t), which returns the number of scenarios at time t. Note
that it may be possible that scenarios happen in parallel, e.g.,
a leading vehicle decelerating and another vehicle overtaking
the ego vehicle. The time-based coverage metric is defined
as follows:

CoverageT(n) =
1

n|T |
∑
t∈T

min(n,M(t)), (2)

with n ∈ Z+. In case CoverageT(1) = 1, all timestamps in
the data are covered by at least one scenario. To account for
the number of scenarios that can occur in parallel, one can
increase the value of n.

C. Actor-based coverage

The actor-based coverage metric answers the question
of whether every relevant actor is covered by at least one
scenario. Let A denote the set of relevant actors. Here, the
term “relevant” could be defined using some conditions.
For example, A could contain all actors that are at some
point in time within a certain distance of the ego vehicle.
Alternatively, A could contain all emergency vehicles in the
data set, etc. Let B denote the set of actors that are part of
at least one scenario. Then, the actor-based coverage metric
is defined as follows:

CoverageA(A) =
|A ∩ B|
|A|

. (3)

D. Actor-over-time-based coverage

Achieving CoverageA(A) = 1 means that all actors of the
set A are part of at least one scenario. However, it does not
consider the temporal aspect of when these actors are part of
a scenario. For example, it could be the case that an actor is
near the ego vehicle — and thus part of A — but only part
of a scenario once this vehicle is far away. To accommodate
the time aspect, we introduce the fourth coverage metric; the
actor-over-time-based coverage.

Let Ta denote the set of timestamps at which the actor
a ∈ A satisfies the conditions that makes this actor part of
A. Furthermore, let K(a, t) be the number of scenarios at



time t that contain actor a. Then, the actor-over-time-based
coverage is defined as follows:

CoverageAT(A) =
1

|A|
∑
a∈A

1

|Ta|
∑
t∈Ta

min(1,K(a, t)). (4)

IV. RESULTS

To illustrate the use of the coverage metrics that are
presented in Section III, the metrics are evaluated based on
scenarios from real-world data. The setup of the experimental
results are presented in Section IV-A and the results are
presented in the subsequent subsections.

A. Setup experiment

The HighD data set [10] is chosen for the experiment
because of its size (more than 40 000 km of naturalistic
driving data) and high accuracy. The data consists of trajec-
tories of cars and trucks at six different locations on German
motorways obtained using video footage from drones.

To obtain the scenario data, each of the more than 100 000
vehicles is treated as an ego vehicle once. I.e., from the total
data set, more than 100 000 smaller data sets are created,
where each of the smaller data sets contains a single ego
vehicle and trajectory data relative to the ego vehicle as if
the other vehicles are perceived from the ego vehicle. It is
assumed that the ego vehicle can see all of its surrounding
vehicles within a distance of 100m. Each of the smaller data
sets stops whenever the ego vehicle is 100m from its final
position; this is done to avoid the sudden disappearance of
vehicles in front of the ego vehicle, as these vehicles would
be out of view of the drone camera. Note that, as a result,
vehicles with a trajectory less than 100m are not considered
as ego vehicles. In total, this resulted in 109 986 data sets
with a single ego vehicle.

Table I lists the 10 scenario categories considered in this
study. This table also summarizes the activities of the ego
vehicle and the main actor(s). Here, the main actor(s) refers
to the actor(s) that are necessary for the scenario to occur.
That is, there may be other actors participating in the scenario
as well, e.g., a vehicle overtaking the ego vehicle in the
leading vehicle cruising scenario. Based on the activities of
the ego vehicle and the main actors and the approach outlined
in [29], the scenarios are automatically extracted. Table I also
indicates the number of scenarios found for each SC.

B. Results tag-based coverage

For the tag-based coverage, 18 different tags are con-
sidered, see Table II. The first two tags apply to the two
different types of vehicles that are considered in the HighD
data set. Tags L3 to L10 relate to the initial position of a
vehicle with respect to the ego vehicle. The tags L11 and
L12 apply if an actor is substantially slower or faster than
the ego vehicle, respectively. The remaining tags describe the
longitudinal (L13 to L15) and lateral (L16 to L18) activities
of vehicles surrounding the ego vehicle. I.e., if there are 5
cars surrounding the ego vehicle, than the tag L1 is applied
only once.
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Fig. 1. Results of the tag-based coverage.

Table II lists the results of the number of scenarios that
contain a certain tag, i.e., the function N(L,C) that has
been introduced in Section III-A. Note that some tags are
by definition part of a scenario, e.g., scenarios belonging to
C1, C2, C3, or C6 always contain the tag L3.

Fig. 1 shows the tag-based coverage that results from the
numbers listed in Table II. It also shows how the tag-based
coverage depends on the set of tags that are considered. For
any choice of L, we have CoverageTag(10) = 1, meaning
that for each tag there are at least 10 scenarios from each
SC that contain that tag. We still have CoverageTag(100) =
1 when considering tags L1, L2, and L10 to L14. For
increasing values of n, CoverageTag(n) starts to decrease. To
further investigate why CoverageTag(n) < 1, the numbers in
Table II can be studied. For example, given the relatively low
occurrence of scenarios from SCs C7 and C8, the counts of
the tags for these SCs are also relatively low.

C. Results time-based coverage

When calculating the time-based coverage, the time in-
stants of each dataset containing an ego vehicle are treated
separately, after which the results are combined and shown
in Fig. 2. Fig. 2 shows that about 75% of the time instants
are covered by at least a single scenario. This indicates that
still a substantial portion of the time instants are not covered
by a scenario. It requires further investigation to determine
if important scenario categories are missed. In this case, in
the remaining 25% of the time instants, there is no actor
that complies with any of the descriptions listed in Table I,
or simply no other actor at all. Indeed, if we would add the
scenario category “ego vehicle has no leading vehicle”, then
CoverageT(1) = 1.

D. Results actor-based coverage

Fig. 3 shows the result of the actor-based coverage for
different sets of actors. Consider an imaginary box with a
certain size around the ego vehicle. Then, A contains all
actors that are at some point in time within this box. To
obtain multiple values of CoverageA(A), the size of this
imaginary box has been varied, as indicated in Fig. 3. For B
(the set of actors that are part of a scenario) only the main



TABLE I
DESCRIPTION OF THE 10 SCENARIO CATEGORIES THAT ARE CONSIDERED IN THIS WORK’S EXPERIMENT.

Symbol Name Ego vehicle activity Main actor(s) activity Count

C1 Leading vehicle cruising Keeping lane Keeping lane and cruising 102308
C2 Leading vehicle accelerating Keeping lane Keeping lane and accelerating 22296
C3 Leading vehicle decelerating Keeping lane Keeping lane and decelerating 20351
C4 Approaching slower vehicle Keeping lane Keeping lane and driving slower than ego vehicle 5052
C5 Cut-in in front of ego vehicle Keeping lane Changing lane to become leading vehicle 2992
C6 Cut-out in front of ego vehicle Keeping lane Leading ego vehicle and then changing lane 3069
C7 Changing lane with vehicle behind Changing lane Behind ego vehicle on adjacent lane 2156
C8 Merging into an occupied lane Changing lane Both main actors stay in lane and become leading and following

vehicles after ego vehicle lane change
819

C9 Ego vehicle overtaking vehicle Keeping lane Keeping lane on overtaken by ego vehicle on adjacent lane 38147
C10 Vehicle overtaking ego vehicle Keeping lane Keeping lane and overtaking ego vehicle on adjacent lane 40307

TABLE II
N(L,C) FOR VARIOUS TAGS AND SCENARIO CATEGORIES, WITH THE CORRESPONDING SCENARIO CATEGORIES (SCS) NAMES LISTED IN TABLE I.

Symbol Tag C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

L1 Car 102 111 22 292 20 341 5050 2992 3067 2147 819 37 996 40 305
L2 Truck 81 475 19 406 17 454 4234 2273 2624 1915 734 34 652 31 999

L3 Same lane in front 102 308 22 296 20 351 5052 1188 3069 834 480 29 295 29 171
L4 Same lane rear 37 281 11 248 14 377 2386 1339 1597 1006 351 23 666 24 913
L5 In front left lane 70 385 17 664 15 934 3860 1857 2377 980 578 37 850 14 773
L6 In front right lane 49 139 9190 8871 2443 2208 1187 820 476 12 388 32 625
L7 At side left lane 4952 2052 1552 228 161 205 40 17 870 1151
L8 At side right lane 4850 1284 1162 201 166 95 44 20 1216 1283
L9 Rear left lane 32 394 12 730 13 183 2243 1245 1750 1205 366 24 979 12 760
L10 Rear right lane 31 462 8052 8741 1777 1387 807 721 275 11 063 37 005

L11 Slower (∆v < −5m/s) 54 750 13 873 14 138 4021 1348 2369 1528 591 35 107 7480
L12 Faster (∆v > 5m/s) 41 061 9032 8046 1798 1831 957 931 403 8124 37 569

L13 Cruising 102 308 22 296 20 351 5043 2964 3051 2142 816 37 935 39 660
L14 Accelerating 57 081 22 296 7652 2554 1610 1481 1260 516 21 270 24 039
L15 Decelerating 58 144 9107 20 351 3419 1794 1833 1287 607 21 132 24 804

L16 Keeping lane 102 308 22 296 20 351 5052 2992 3068 2156 819 38 147 40 307
L17 Changing lane left 6771 1405 1759 384 2090 2101 32 13 2545 2668
L18 Changing lane right 4154 1127 982 339 987 1073 12 15 1794 1741
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Fig. 2. Results of the time-based coverage.

actors of a scenario, as described in Table I, are considered.
Note that if all actors part of a scenario would be considered,
the result of the actor-based coverage would be practically
similar to the time-based coverage.

When considering only actors that are ahead of the ego
and in the ego vehicle’s lane (blue solid line in Fig. 3), then
CoverageA(A) = 1 if only vehicles that are within 10m are
considered. In all other cases, there is no full coverage. As
with the other coverage metrics, a further investigation into

the data is needed to find out why some actors are not a main
actor of a scenario, even if vehicles are as near as 15m. In
this study, these non-main actors are vehicles that are in front
of the vehicle that the ego vehicle is following. Especially in
a traffic jam, vehicles that are ahead of the leading vehicle
can still be relatively close to the ego vehicle.

When changing the width of the imaginary box that
contains the actors of A, the value of CoverageA(A) drops
substantially. This can be explained by the fact that vehicles
in the adjacent lane are only considered in several occasions,
namely if such a vehicle is overtaken by the ego vehicle
(C9) or if such a vehicle overtakes the ego vehicle (C10).
Vehicles that are two lanes away from the ego vehicle are not
considered as main actors for any SC, which is why the green
lines in Fig. 3 are lower than the corresponding red lines.
It can also be noted that a substantially lower actor-based
coverage is obtained if the imaginary box extends towards
the back of the ego vehicle. This can be explained from the
fact that there is only one SC (C8) that considers a main actor
that is or could be behind the ego for the whole duration of
the scenario.
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E. Results actor-over-time-based coverage

The results of the actor-over-time-based coverage are
shown in Fig. 4. The lines show a similar pattern as seen
in Fig. 3. Especially for actors in the same lane and in
front of the ego vehicle (blue lines in Figs. 3 and 4), the
results are nearly the same. This indicates that those actors
are generally part of a scenario as a main actor whenever
they are within the imaginary box. In the other cases (i.e.,
all lines except the blue solid line) the actor-over-time-based
coverage is generally a bit lower, which indicates that even
if the relevant actors are covered, they are not covered for
the entire duration that they are within the boundaries of the
imaginary box.

V. DISCUSSION

This work presented four different types of coverage
metrics that can be used to determine whether the collected
scenarios cover all relevant aspects of an ODD (coverage
type I) and whether the collected scenarios cover all relevant
aspects that are in the data (coverage type II). The presented
coverage metrics can be helpful to decide to collect more
data, start dedicated data campaigns to address parts of the

ODD that are insufficiently covered, include more SCs, or
decide that enough data and SCs are considered. To decide
if any of these actions is appropriate, a further investigation
is needed while considering the following aspects:

• As described in Section IV, it is not always possible to
achieve CoverageTag(n) = 1. However, it may neither
be necessary. When considering tags related to the road
layout at which the scenario is taking place, it might be
the case that some scenario categories do not contain
hardly any scenarios with certain tags because certain
type of scenarios only occur with a certain road layout.
For example, a cut-in of another vehicle far less likely
on a single-lane road.

• Even if CoverageT(n) = 1, it could mean that impor-
tant information is not captured. For example, if generic
SCs are considered, such as “driving on motorway”
and “driving on a non-motorway road”, one can already
obtain CoverageT(1) = 1. Still, it could be the case that
important information is not captured by the scenarios,
e.g., if the trajectory of a relevant actor is not captured.

• A high coverage type II could be a result of lots of false
positives of the detected scenarios. The coverage type
II metrics presented in this work only check if some
time instants and/or actors are covered by a scenario. It
might be possible that a high coverage is obtained due
to the false detection of scenarios.

• On the other hand, a low coverage score could be the
result of many false negatives. I.e., if all scenarios would
have been correctly detected, a higher coverage would
be obtained.

Note that achieving both high coverage for type I and
type II is generally difficult. For achieving high coverage for
type II, one may need to consider many scenario categories,
including scenario categories that contain only few scenarios.
As a result, it will generally be more difficult to achieve
a high score for the tag-based coverage, which is a type I
coverage metric. Given that a value of 1 for all coverage
metrics is generally difficult, it remains future work to
determine — depending on the context — what appropriate
values of the coverage are. Note that the required coverage
values may depend on the input parameters of those coverage
metrics, e.g., the set of tags (L), n for CoverageTag(n)
and CoverageT(n), and the conditions used to determine
whether an actor is an element of A for CoverageA(A) and
CoverageAT(A).

We have illustrated the presented coverage metrics by
applying them on the scenarios obtained from the HighD
data set. The experiment has shown how varying metrics
can be obtained by using different tags, SCs, and values for
n. While we have considered ten SCs, it is important to note
that the number of SCs in a real-world application is likely to
be substantially higher. Similarly, the number of tags relevant
to an an ODD is expected to be higher in practice. Next to
involving more SCs and tags, future work could consider the
use of additional or alternative data sets.

For increasing the trustworthiness of the data-driven,



TABLE III
OVERVIEW OF THE DIFFERENT TYPES OF COVERAGE AND

COMPLETENESS.

Coverage Completeness

Type I Do the collected scenarios
cover all relevant aspects of
an ODD?

Do the driving data con-
tain all relevant details of an
ODD?

Type II Do the collected scenarios
cover all relevant aspects
that are in the driving data?

Do the collected scenarios
describe all relevant details
that are in the driving data?

scenario-based safety assessment of an ADS, not only
achieving a high coverage is important, but also achieving a
high completeness is important. Here, “completeness” is not
to be confused with “coverage”. Where coverage refers to
the extent to which data capture aspects of interest — in our
case, the ODD — completeness refers to the extent to which
the data is free from missing values. Similarly to coverage,
two types of completeness could be considered, both aiming
to answer different questions:

• Type I: Do the driving data contain all relevant details
of an ODD?

• Type II: Do the collected scenarios describe all relevant
details that are in the driving data?

An overview of the different types for coverage and com-
pleteness is shown in Table III. An aspect considered for
type I completeness could be the trajectories of actors that
are simply missing from the data. Note that in that case, a
high coverage could still be obtained even though important
information is missing. Therefore it is essential that the data
is free from large omissions, i.e., high completeness type I.
Also, a high coverage could be obtained even if the collected
scenarios do not contain all relevant aspects that are in the
data, which would indicate insufficient completeness for type
II. In a recent work from Glasmacher et al. [23], a method-
ology is proposed to argue a sufficient completeness of a
scenario concept, which is related to type II completeness.
Future research is required to further address this and to
develop metrics that can be used to quantify the extent of
completeness.

Both the concepts of coverage and completeness as de-
scribed in Table III refer to the ODD. However, for the
safe deployment of an ADS, the ADS must be capable
of dealing safely in all operating conditions it encounters
during its deployment, rather than the operating conditions
it is designed for. To describe the actual operating conditions
of an ADS, the term Target Operational Domain (TOD) is
coined [7]. Future research should address how to measure
the extent to which the ODD covers the TOD.

VI. CONCLUSIONS

To realize the potential benefits of the deployment of
Automated Driving Systems (ADSs), the safety should be
adequately ensured. Assessing safety can be systematically
approached through scenario-based evaluations. Data from

(naturalistic) driving can serve as a source for characteriz-
ing scenarios. This work proposes two types of coverage
metrics to quantify the extent to which the data and the
scenarios derived from them cover the ADS’ Operational
Design Domain (ODD). Coverage type I measures the extent
to which the scenarios extracted from driving data cover
the relevant details of an ODD whereas coverage type II
measures the extent to which the scenarios cover the relevant
details in the driving data. The proposed coverage metrics
can be used to identify missing data or scenarios that should
also be considered for the safety assessment. Hence, the
presented metrics may serve as part of the argumentation
that adequate (test) scenarios have been accounted for in the
safety assessment of an ADS, thus aiding the type-approval
process in accordance with the multi-pillar Safety Assess-
ment Framework (SAF) outlined by the United Nations
Economic Commission for Europe (UNECE) [4]. Given that
achieving 100% coverage for all presented coverage metrics
is not always practical or necessary, future work involves
establishing suitable coverage thresholds. Where this work
outlines coverage metrics, a topic for future research is the
quantification of the completeness of driving data and the
identified scenarios. Additionally, future research should be
dedicated to the quantification of the degree to which the
ODD encompasses the actual operating conditions of an
ADS.
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