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EXECUTIVE SUMMARY 

Safety assurance of Cooperative, Connected, and Automated Mobility (CCAM) systems is a 

crucial factor for their successful adoption in society, yet it remains a significant challenge. It 

is generally acknowledged that for higher levels of automation, the validation of these systems 

by conventional test methods would be infeasible. Furthermore, certification initiatives 

worldwide struggle to define a harmonized safety assurance approach enabling massive 

deployment of CCAM systems. 

The SUNRISE project develops and demonstrates a CCAM Safety Assurance Framework 

(SAF). The overall objective of the SUNRISE project is to accelerate the large-scale and safe 

deployment of CCAM systems. In alignment with international twin projects and initiatives, the 

project aims to achieve this objective by providing a SAF consisting of three main components: 

a Method, a Toolchain, and a Data Framework. The Method is established to support the SAF 

safety argumentation. It includes procedures for scenario selection, sub-space creation, 

dynamic allocation to test instances, and a variety of metrics and rating procedures. The 

Toolchain contains a set of tools for the safety assessment of CCAM systems, including 

approaches for virtual, hybrid, and physical testing. The Data Framework provides online 

access, connection, and harmonization of external Scenario Databases (SCDBs), allowing its 

users to perform query-based extraction of safety safety-relevant scenarios, allocation of 

selected scenarios to a variety of test environments, and reception of the test results.  

After the Data Framework was queried and the logical scenarios were obtained, the 

concretisation step (Query & Concretise block of SAF) is needed to enable testing activities 

within the SUNRISE SAF (part of Execute block of SAF). This deliverable presents different 

concretization approaches for translating logical scenarios into concrete scenario, with the 

goal of creating a Subspace Creation Methodology, to guide testing effort into relevant 

subspaces of the larger parameter space. Logical scenarios, which define abstract 

representations of driving situations through parameter ranges and constraints, form the basis 

for generating systematic test case generations. The goal of this Subspace Creation 

Methodology is to enable a structured and efficient approach to selecting representative test 

cases from the vast space of possibilities described by logical scenarios. 

A central focus of the Subspace Creation Methodology is the process of sampling or 

selecting specific parameter values from the logical scenarios’ parameter space. This 

involves addressing a range of user-specific requirements, which may vary depending on the 

testing context or application domain. Key factors include the nature of the parameters, such 

as whether they are defined on a discrete or continuous scale, the availability of probability 

distributions for those parameters, and the characteristics of existing test instances or prior 

knowledge that can inform the sampling process. 

This deliverable outlines a categorization of methods designed to guide the sampling 

process and improve the relevance and efficiency of test scenario generation. Among these, 

some are techniques that incorporate machine learning to make the exploration of the 

scenario space more intelligent and targeted. These methods have been developed 

specifically for the SUNRISE SAF to help maximize coverage of critical test cases while 
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minimizing the total number of concrete scenarios needed. This is especially valuable in the 

context of safety-critical systems, where exhaustive testing is often impractical due to the 

sheer size of the scenario space. 

A key aspect of the Subspace Creation Methodology is the identification and prioritization of 

relevant subspaces within the overall scenario parameter space of the scenario. By 

determining which regions of the parameter space are most critical for the safety assessment, 

and which are less relevant or redundant, the Subspace Creation Methodology enables a 

more focused and efficient testing strategy. This reduction in scope not only improves test 

efficiency but also ensures that testing efforts are concentrated on areas with the highest 

potential safety impact. 

In addition, deliverable describes metrics and methods for quantifying how well the selected 

concrete scenarios cover the original logical scenario space. Coverage is essential for 

evaluating the completeness and robustness of the testing process. The deliverable also 

discusses the safety evaluation metrics that must be defined and applied in order to assess 

the outcomes of each test case and support meaningful pass-fail decision. 

.  
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1 INTRODUCTION 

1.1 Project introduction 

Safety assurance of Connected, Cooperative, and Automated Mobility (CCAM) systems is a 

crucial factor for their successful adoption in society, yet it remains a significant challenge. 

CCAM systems need to demonstrate reliability in all driving scenarios, requiring robust safety 

argumentation. It is acknowledged that for higher levels of automation, the validation of these 

systems by means of real test-drives would be infeasible. In consequence, a carefully 

designed mixture of physical and virtual testing has emerged as a promising approach, with 

the virtual part bearing more significant weight for cost efficiency reasons.  

Worldwide, several initiatives have started to develop test and assessment methods for 

Automated Driving (AD) functions. These initiatives already transitioned from conventional 

validation to a scenario-based approach and combine different test instances (physical and 

virtual testing) to avoid the million-mile issue. 

The initiatives mentioned above, provide new approaches to CCAM validation, and many 

expert groups formed by different stakeholders, are already working on CCAM systems’ 

testing and quality assurance. Nevertheless, the lack of a common European validation 

framework and homogeneity regarding validation procedures to ensure safety of these 

complex systems, hampers the safe and large-scale deployment of CCAM solutions. In this 

landscape, the role of standards is paramount in establishing common ground and providing 

technical guidance. However, standardising the entire pipeline of CCAM validation and 

assurance is in its infancy, as many of the standards are under development or have been 

very recently published and still need time to be synchronised and established as common 

practice. 

Scenario Databases (SCDBs) are another issue tackled by several initiatives and projects, 

that generally tends to silo solutions. A clear, concrete approach should be used (at least at 

European level), dealing with scenarios of any possible variations, including the creation, 

editing, parameterisation, storing, exporting, importing, etc. in a universally agreed manner. 

Furthermore, validation methods and testing procedures still lack appropriate safety 

assessment criteria to build a robust safety case. These must be set and be valid for the whole 

parameter space of scenarios. Another level of complexity is added, due to regional 

differences in traffic rules, signs, actors, and situations. 

Evolving from the achievements obtained in HEADSTART and taking other project initiatives 

as a baseline, it becomes necessary to move to the next level in the development and 

demonstration of a commonly accepted Safety Assurance Framework (SAF) for the safety 

validation of CCAM systems, including a broad portfolio of Use Cases (UCs) and 

comprehensive test and validation tools. This will be done in SUNRISE, which stands for 

Safety assUraNce fRamework for connected, automated mobIlity SystEms. 
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The SAF is the main product of the SUNRISE project. As the following figure indicates, it takes 

a central role, fulfilling the needs of different automotive stakeholders that all have their own 

interests in using it. 

  

 
Figure 1: Safety Assurance Framework stakeholders 

 
The overall objective of the SUNRISE project is to accelerate the safe deployment of 

innovative CCAM technologies and systems for passengers and goods by creating 

demonstrable and positive impact towards safety, specifically the EU’s long-term goal of 

moving close to zero fatalities and serious injuries by 2050 (Vision Zero), and the resilience of 

(road) transport systems. The project aims to achieve this objective by providing a SAF 

consisting of three main components: a Method, a Toolchain, and a Data Framework. The 

Method is established to support the SAF safety argumentation, and includes procedures for 

scenario selection, sub-space creation, dynamic allocation to test instances, and a variety of 

metrics and rating procedures. The Toolchain contains a set of tools for safety assessment 

of CCAM systems, including approaches for virtual, hybrid, and physical testing. The Data 

Framework provides online access, connection and harmonization of external Scenario 

Databases (SCDBs), allowing its users to perform query-based extraction of safety relevant 

scenarios, allocation of selected scenarios to a variety of test environments, and generation 

of the test results. The SAF will be put to the test by a series of Use Cases demonstrations, 

designed to identify and solve possible errors, gaps, and improvements to the underlying 

methods, tools, and data. 

Following a common approach will be crucial for present and future activities regarding the 

testing and validation of CCAM systems, allowing to obtain results in a standardised way, to 

improve analysis and comparability, hence maximising the societal impact of the introduction 

of CCAM systems. 

The following figure shows the general workplan of the SUNRISE project. 
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Figure 2: Workplan of the SUNRISE Project  

1.2 Purpose of deliverable 

This deliverable outlines the Subspace Creation Methodology for deriving concrete test 

scenarios from logical scenarios extracted via the SUNRISE Data Framework. It serves as a 

bridge between the query process developed within the SUNRISE project, first detailed in 

Deliverable D6.1, and the allocation strategy for mapping test scenarios to test instances, as 

described in Deliverable D3.3.  

The document provides an overview of sampling and selection approaches, designed not only 

for SUNRISE-specific use cases but also adaptable to external applications. These include 

approaches from literature, as well as solutions that have been developed within the SUNRISE 

project. The different approaches are structured and categorized in a framework. The purpose 

of this framework is to provide guidelines for selecting the most effective approach under 

various conditions, including differing data source availability. Additionally, strategies for 

structuring the extensive parameter space of logical scenarios into smaller, more manageable 

sub-spaces tailored to testing CCAM systems using the sampling and selection approaches 

are presented. Using smart sapling algorithms to focus testing in scenario sub-spaces is the 

focus of this deliverable. 

1.3 Intended audience 

The primary audience includes all stakeholders, both internally and externally, who require a 

methodology to generate test scenarios for the safety assurance of CCAM systems. 

Specifically, the contents of this deliverable should be used within the SUNRISE project to 

help determine the methodology to generate concrete scenarios for the project’s use cases. 

External stakeholders can use this deliverable to guide their application of the Concretization 

step within the Query & Concretize block of the SUNRISE SAF. 
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1.4 Deliverable structure and relation to other parts of the 
project 

The work presented in this deliverable is intricately linked to the activities in other technical 

work packages, forming a cohesive part of the overall project’s Safety Assurance Framework 

(SAF). Its connection to WP4 is evident, as the methodology developed here, serves as the 

foundation for generating concrete test scenarios critical to WP4's objectives. Similarly, the 

logical scenarios produced extracted by the SUNRISE Data Framework in WP6 seamlessly 

feed into this Subspace Creation Methodology, highlighting the collaborative nature of these 

efforts. 

In WP5, the ontology and metrics play an important role, providing essential elements that are 

integrated into and utilized by the methodology. Finally, the real-world applicability of this work 

is showcased in WP7, where the methodology is demonstrated in practice. 

The sections that follow delve deeper into these relationships, providing a comprehensive view 

of how this deliverable aligns with and supports the goals of the different work packages and 

tasks across the project. 

1.4.1 Relation to WP2  

As mentioned above, this deliverable is intricately linked with the project’s Safety Assurance 

Framework. WP2 concerns the developments of this framework and therefore dictates how 

all other work packages will interact with it.  

In particular, the methodology of subspace creation interacts with the Safety Assurance 

Framework as part of the Query and & Concretise block, visualised in Figure 3. Work package 

2 has defined the workflow for which subspace creation features. From the SAF, we know that 

scenarios can be retrieved from individual scenario databases, via the SUNRISE Data 

Framework (DF), in both logical and concrete levels of abstraction.  

All parameters of logical scenarios are defined using value ranges (including infinite such as 

curvature radius covering curves and straights), allowing for an infinite number of concrete 

scenarios to be derived from a single logical scenario. The next step is to concretise these 

parameter ranges into specific values and to combine these concrete scenarios with the test 

objectives. Methods of selecting and concretising scenarios are not covered within the scope 

of WP2 and rather are rather explored here and in related work packages. 
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Figure 3: SUNRISE SAF, highlighting the position of the ‘Query and Concretise’ block within the 

process. 

1.4.2 Relation to WP3 

The deliverable D3.4 plays a key role within the structure of WP3, as it describes the 

concretization step in the Query & Concretize block of the SUNRISE SAF, in addition to giving 

information on other blocks, like Coverage, as well. The deliverable builds upon the 

requirements defined in deliverable D3.2 [1]. Additionally, the content of the deliverable D3.4 

is interconnected with that of deliverable D3.5 [2], which describes the validation of test runs 

and deliverable D3.3 [3], which takes the concrete scenarios sampled or selected by the 

methods described in this deliverable as an input. 

1.4.3 Relation to WP4 

Although the methods listed in this deliverable do not influence the development in the WP4 

tasks, this work is an important prerequisite for the ‘Execute’ block of the SUNRISE SAF. It 

ensures a meaningful selection and combination of parameters and thus reduces the number 

of tests required, resulting in less time and cost for the execution of the tests. 

1.4.4 Relation to WP5 

The efforts within WP5 give support to the efforts within this deliverable by providing definitions 

for formats and ontologies. Especially important are the definition of metrics within deliverable 

D5.3 [44] that are used for the methodology as well. 

1.4.5 Relation to WP6 

The concretization process described within this deliverable is the step directly succeeding 

the querying as defined in WP6. The output of the querying process are scenarios that can 

either be tested directly or must be concretized in a process that is described in this 

deliverable. As such, it is very important to consider the formats, as well as the structure of 

the querying process and the related tools developed within WP6. 
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1.4.6 Relation to WP7 

Within WP7, the SUNRISE SAF is put to the test by evaluating the safety of different CCAM 

systems in different use cases. The resulting methodology of this deliverable was used in WP7 

to enable the concretization of the use case scenarios to enable simulation, proving ground, 

and hybrid testing. A description of the use cases is given in deliverable D7.2 [4]. 
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2 SCENARIOS AND PARAMETER SPACES 

This chapter establishes the foundation for the methodology Subspace Creation Methodology 

detailed in the subsequent chapters. To achieve this, it begins by defining the key terms and 

concepts essential to the discussion, such as logical and concrete scenarios, as well as 

scenario parameter spaces. This gives the necessary background for the Subspace Creation 

Methodology that follows. 

Most of the groundwork for concepts and terminology has been provided by the deliverable 

D3.2 [1]. The deliverable D3.2 does also discuss requirements related to scenarios, some of 

which are very relevant for this deliverable as well. In this chapter the relevant content from 

D3.2 is highlighted and expanded to form the basis for further content in this deliverable. 

2.1 Scenario Definition 

A brief definition of a scenario and its abstraction level is required, as this is the foundational 

concept surrounding the methods and approaches discussed in this deliverable. For a more 

detailed definition one should refer to deliverable D3.2 [1], as well as the commonly accepted 

standard ISO 34501. A scenario, as defined by deliverable D3.2 [1] is a description of a 

temporal and spatial traffic constellation, that includes the specific set of conditions or and 

events that an ADS may encounter during its operation. 

Another definition is provided by Ulbrich et al. (2015), who define a scenario as a sequence 

of scenes that capture the state of an environment over time. A scene, as defined by ISO 

34501, is a snapshot of all entities. These scenes may include actions, events, conditions, or 

goals that shape their temporal evolution. Scenarios offer a structured and deterministic 

framework for representing subjective situations, such as those a driver might encounter. The 

outcome of a scenario, however, remains undetermined, influenced by the interactions of 

various actors involved. 

Scenarios can be classified based on their level of abstraction into four main types: functional, 

abstract, logical, and concrete. A description of different scenario abstractions is provided by 

[5]. Functional scenarios, being the most abstract, provide high-level descriptions of events 

and conditions in natural language. The abstract scenario is a more formalized description of 

a functional scenario based on an ontology. Abstract scenarios are further refined into logical 

scenarios, where parameters and their ranges are specified, such as the initial speed of an 

ego vehicle. At the most detailed level, concrete scenarios assign precise values to these 

parameters, offering a complete and specific representation of the scenario. 
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Figure 4: Different scenario abstraction levels. 

 

Beyond levels of abstraction, scenarios can also be categorized by their content. One common 

approach is the six-layer model proposed by [6], which organizes scenario elements into 

distinct categories: 

1. Road Network and Traffic Guidance Objects: This layer describes static 

infrastructure like lanes and traffic signs. 

2. Roadside Structures: Includes objects such as buildings and vegetation adjacent to 

the road. 

3. Temporary Modifications: Captures changes to layers 1 and 2, such as construction 

zones or temporary barriers. 

4. Dynamic Objects: Represents moving entities, such as vehicles and pedestrians. 

5. Environmental Conditions: Covers factors like weather, lighting, and visibility. 

6. Digital Information: Encompasses elements such as navigation data and vehicle-to-

infrastructure communication. 

For scenarios to be operational, particularly in applications like traffic simulations, they must 

be systematically defined within these layers, ensuring consistency and interoperability. This 

is often achieved through the use of ontologies that capture the relationships between 

scenario elements. Additionally, a standard format is necessary to represent the scenario 

content in a way that is both human-readable and machine-interpretable. 
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Industry standards established by the Association for Standardization of Automation and 

Measuring Systems (ASAM) provide essential tools for this purpose. Key among these are 

OpenSCENARIO, which handles dynamic content such as the behaviour of vehicles and 

pedestrians, and OpenDRIVE, which describes static road network configurations. Together, 

these standards enable the creation of robust and reusable scenarios for a wide range of 

applications. 

2.2 Parameter Space Definition 

The parameter space, as defined by deliverable D3.2 [1], refers to the entire range and 

combinations of these scenario parameters in a logical scenario. The scenario parameters 

create together form a multidimensional representation of all relevant variables that 

characterize a driving scenario. These parameters encapsulate a wide range of aspects, 

typically categorized into the following domains: 

• Environmental parameters: weather conditions (e.g., rain, fog, snow), lighting (e.g., 

day, night, dusk), and road surface conditions. 

• Traffic parameters: presence and behaviour of other road users (e.g., cars, 

pedestrians, cyclists) or objects, traffic density, and traffic rule compliance. 

• Road infrastructure parameters: road type (e.g., highway, urban street), geometry 

(e.g., curves, slopes), lane markings, intersections, and signage. 

• Vehicle dynamics parameters: speed, acceleration, braking capability, and sensor 

configurations of the ego vehicle. 

• Interaction parameters: temporal and spatial gaps between vehicles, merging 

behaviour, and cooperative communication patterns in connected environments. 

The parameter space must be sufficiently comprehensive to capture the variability and 

complexity of real-world scenarios, while also being tractable for simulation and analysis. To 

this end, ranges and discretizations are typically defined for each parameter, either through 

expert knowledge, empirical data, or regulatory requirements. 

An effectively defined parameter space allows for the generation of a wide spectrum of test 

cases, ranging from common to edge-case scenarios. It also forms the foundation for 

scenario-based testing methodologies, such as those discussed in this deliverable. 

2.3 Selection and Sampling 

In academic publications and discussions, "sampling" and "selection" are often used 

interchangeably, though they differ significantly. This confusion arises partly from the frequent 

association of both concepts with creating scenarios or datasets for autonomous driving 

system verification, often by testing or falsification. However, methodologically, there is an 

essential distinction: "sampling" specifically refers to generating simulated data based on 
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probabilistic models, while "selection" involves choosing real scenarios observed in an existing 

database. This distinction can significantly impact verification results, as selected scenarios 

reflect real situations, while sampled scenarios rely on probabilistic assumptions. 
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3 GENERAL CONCRETIZATION APPROACHES  

 It is not possible to identify a singular approach for subspace creation and the underlying 

selection and sampling methods that provides a consistent methodology. Instead, this 

deliverable presents a variety of different approaches applicable in various situations. To 

facilitate understanding, these approaches are structured to highlight their commonalities and 

differences. In this chapter, a unifying concretization categorization framework is introduced 

that organizes these methods. Additionally, various approaches from literature are presented 

that align with our categorization. The following Chapter 4 will shift focus to the specific 

approaches developed in SUNRISE aimed at addressing the concretization and subspace 

creation problems discussed in Chapter 4. 

3.1 Scenario Concretization 

The main goal of any approach is the creation of concrete scenarios, since these are the 

scenarios required for testing, both in simulation, and proving ground test instances. The 

scenario databases are however frequently storing logical scenarios. This is also sensible, 

since every logical scenario can include an infinite number of concrete scenarios. The process 

of deriving a finite number of concrete scenarios from a logical scenario is called scenario 

concretization. This process also takes an important place within the SUNRISE SAF, having, 

together with the querying process, a block, the Query and Concretise block, dedicated to it. 

To conduct the scenario concretization process, sampling methods are required. The goal of 

these methods is to determine an appropriate number of samples, or parameter combinations, 

as well as the combinations themselves to test the CCAM system. 

 

 

 

Figure 5: Structure of the Concretization Categorisation Framework 
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The overall structure of the categorization framework is described in Figure 5. On a high level, 

we distinguish between two main categories, Naïve Search and Guided Search. The high-

level structure of the framework as it is presented in this chapter is based on [7], with further 

adaptations to fit the SUNRISE SAF. The categories of the framework are further explained in 

the next sections. 

3.2 Naïve Search 

For a use case with a scenario space of lower dimensionality, it is feasible to use a naïve 

approach for scenario exploration by randomly or systematically searching over the scenario 

space. Since all samples are mutually independent, they can be processed in parallel to 

reduce computing time. However, as the logical scenarios become more complex and problem 

dimension increases using naïve methods can become infeasible. 

3.2.1 Sampling with distributions unconsidered 

In many real-world scenarios, we often need to generate samples without having any prior 

knowledge of the underlying distribution. This is common in early-stage modelling, 

simulations, or exploratory analyses where the input space is defined, but its probabilistic 

structure is unknown. In such cases, sampling methods that do not rely on a predefined 

distribution become particularly valuable. Two widely used techniques in this category are 

random sampling and Latin hypercube sampling. 

Random sampling is perhaps the most intuitive approach. It involves selecting points uniformly 

at random from the input space, treating each dimension independently and without bias. This 

method is easy to implement and works well in simple or low-dimensional settings. However, 

as dimensionality increases, random sampling can lead to uneven coverage, some areas may 

be oversampled, while others are left sparse, potentially reducing the reliability of downstream 

analyses, since randomness can miss certain rare characteristics [8]. A solution can be to use 

stratified sampling instead. 

One sampling approach to reducing the variance is Latin hypercube sampling (LHS), which 

offers a more structured alternative. Instead of drawing points entirely at random, LHS divides 

the range of each variable into equal intervals and ensures that each interval is sampled 

exactly once. This stratified strategy leads to better coverage of the input space, making it 

especially useful in high-dimensional problems or when computational efficiency is a concern. 

Despite its more complex setup, LHS provides a significant improvement in the variance of 

the sample set without assuming any prior knowledge of distributions [9]. 

Various other sampling methods are available, each suited to specific needs, such as Monte 

Carlo (MC) methods [10], Metropolis-Hastings [11], Gibbs sampling [12], and Markov Chain 

Monte Carlo (MCMC) [13]. These techniques are widely used to generate test or evaluation 

scenarios based on probabilistic models. 
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3.2.2 Sampling with distributions considered 

Typically, multiple parameters are considered for a (test) scenario. In addition, at least some 

of the values of these parameters are dependent. Thus, multivariate distributions are needed 

to model the probability density that is underlying the parameter values of the real-world 

scenarios.  

To model multivariate distributions, two distinct approaches can be considered: parametric 

distributions and non-empirical distributions. With parametric distributions, a functional form is 

chosen and parameters of these distributions (not to be confused with the earlier-mentioned 

scenario parameters) are fitted to the data. With non-parametric distributions, there is no 

functional analytical expression for the probabilities chosen. The benefit of this approach is 

that the shape of the distribution automatically adapts to the data. This goes at a cost: fitting 

a non-parametric distribution typically requires more data than fitting a parametric distribution. 

Thus, if a functional form of the specific distribution can be justified, this should be preferred. 

In the case of the scenario parameters, however, there is generally no justification for 

assuming a particular functional form of the distribution.  

In [14] the use of Kernel Density Estimation (KDE) to fit the scenario distribution is proposed. 

If a set of observed 𝑑 -dimensional scenario parameters is denoted by {𝑥𝑖}𝑖=1
𝑛 , then the 

estimated probability density function with KDE is: 

𝑓(𝑥) =
1

𝑛ℎ𝑑
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

. 

Here, 𝐾(⋅) is the so-called kernel function, and ℎ > 0 is the bandwidth. Intuitively, KDE has 

the effect of smoothing out each data point into a bump whose shape is determined by 𝐾(⋅). 

Figure 6 illustrates a KDE in one dimension. Here, the data points are represented by the black 

vertical lines, which are then smoothed by the kernel illustrated by the red curves. The final 

result is obtained by adding the individual red curves, resulting in the blue line. Note that here, 

use is made of the Gaussian kernel, given by 

𝐾(𝑢) =
1

(2𝜋)
𝑑
2

exp {−
1

2
‖𝑢‖2

2}, 

where ‖𝑢‖2
2 = 𝑢T𝑢 denotes the squared 2-norm of 𝑢. 



 

D3.4 Report On Subspace Creation Methodology | 26 

Figure 6: Illustration of Kernel Density Estimation in one dimension. Figure taken from [15]. 

Sampling from a KDE is straightforward: two random numbers are drawn, one to choose a 

random generator (ranging from 1 to 𝑛), and one random number from the chosen kernel. 

KDE also allows conditional sampling, i.e., sampling parameter values while fixing one or more 

parameters to a particular value [16]. 

Typically, the choice of the kernel function is less important than the choice of the bandwidth. 

A larger bandwidth results in a smoother result. Choosing ℎ too large may result in loss of 

details. Methods to determine the bandwidth range from simple reference rules like 

Silverman's rule of thumb [17] to more elaborate methods, such as cross-validation methods 

and plug-in methods [18]. Note that often the same amount of smoothing is applied in every 

direction; it is also possible to use a bandwidth matrix 𝐻  to apply different smoothings, in 

which case 𝐾 (
𝑥−𝑥𝑖

ℎ
) becomes 𝐾(𝐻−1(𝑥 − 𝑥𝑖)).  

Other non-parametric probability density estimation includes the use of normalizing flows [19]. 

Compared to KDE, normalizing flows scale better with the dimensionality of the data, which 

makes them a popular approach when many dimensions are considered. The main idea of a 

normalizing flow is to transform a known base density, such as a Gaussian distribution, to the 

density of the underlying data using some invertible transformation. Provided that a base 

density is chosen from which it is straightforward to sample, sampling values from a density 

estimated using normalizing flows is straightforward too: a number is generated from the base 

density and then transformed using the transformation towards the original parameter space. 

A first study on the use of normalizing flows for estimating distributions of scenario parameters 

is performed in [20] and [21]. First results indicate that normalizing flows can be utilized to 

estimate probability density functions. It may require more computational resources and 

tweaking of the hyperparameters, but initial results suggests that normalizing flows are less 

prone to the curse of dimensionality. Thus, normalizing flows may be particularly useful, 

compared to KDE, if the number of scenario parameters is increasing. 
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3.2.3 Exhaustive Search 

Exhaustive search (also denoted exhaustive testing) is a straightforward method, for which 

full coverage can be guaranteed, that is feasible when the scenario space is fully discrete and 

reasonable reasonably small [22]. One approach for exhaustive search is to discretise the 

continuous parameters, followed by performing a full-scale grid search examining every 

existing test case in the scenario space. Alternatively, for the case scenarios that are available 

from a scenario database, all scenarios derived from the database are checked. 

3.2.4 Selection 

In academic publications and discussions, "sampling" and "selection" are often used 

interchangeably, though they differ significantly. This confusion arises partly from the frequent 

association of both concepts with creating scenarios or datasets for autonomous driving 

system verification, often by testing or falsification. However, methodologically, there is an 

essential distinction: "sampling" specifically refers to generating simulated data based on 

probabilistic models, while "selection" involves choosing real scenarios observed in an existing 

database. This distinction can significantly impact verification results, if the selected scenarios 

reflect real situations, while sampled scenarios generally rely on probabilistic assumptions. 

Selection is important, since it can be impractical to process every concrete scenario collected 

from scenario databases containing concrete scenarios due to the sheer volume, which makes 

handling and processing labour-intensive and complex. Thus, it becomes essential to extract 

a manageable sample that is feasible in terms of time and budget. Hence reducing the size of 

this real-world database while retaining the breadth of information it contains and accounting 

for inherent redundancies is a main issue. This raises the crucial question of selecting reduced 

subsets out of a set of concrete scenarios from the same logical scenario that maintain all 

essential information from the total population with fewer elements to facilitate subsequent 

testing. Indeed, in the scenario-based approach to evaluating automated vehicles, careful 

concrete scenario selection is essential to determine which specific scenarios will undergo 

testing. Choosing the right scenarios is fundamental for a comprehensive and effective 

evaluation of automated vehicles’ performance and safety. 

Scenario selection, particularly in the context of driving, is less commonly used and less 

explored in the literature than sampling approaches that have been discussed, as it generally 

arises after collecting a large database and requires substantial investment for extracting 

meaningful real cases. For instance, [23] focus on identifying high-risk scenarios for 

cooperative and automated vehicles using simulation-based criticality assessments, directing 

testing efforts towards significant cases. [24] propose a relevance-based filtering method to 

reduce the number of test scenarios while ensuring comprehensive coverage of critical cases. 

[25] utilize clustering techniques to group similar scenarios, allowing the selection of a 

representative subset for continuous validation of highly automated driving systems, 

maintaining diversity within a reduced dataset. These approaches collectively aim to optimize 

selection test examples while preserving robust coverage of essential driving scenarios. 

Though complex and data-intensive, selecting real scenarios offers the advantage of providing 

real driving situations with fully recorded data, enabling more realistic validation and a deeper 

understanding of autonomous vehicle behaviour. Additionally, scenario selection allows 
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working with complete multidimensional data, enabling comprehensive analysis of all relevant 

variables in real-world driving.  

The recent approach proposed in [26] combines these aspects: selecting real occurrences 

from samples using an equiprobable partition of the continuous variable space while 

leveraging this same partition for stratified simulations. Inspired by the concept of Latin 

Hypercube Sampling, this method differs by not requiring an independence assumption 

between variables and adapts even with numerous variables. This improvement is achieved 

by efficiently selecting real, simulated, or mixed sub-populations in a statistically 

representative manner, even for a large number of variables. It thus offers an integrated 

solution to optimize both real data selection and simulation, enabling more efficient evaluation 

of autonomous driving systems. 

3.2.5 Combinatorial Testing 

Combinatorial testing (CT) focusses on identifying failures triggered only by combinations of 

inputs  [22]. For an ADS or a particular AD function, it can be used to find the unknown 

combinations of influential factors that may cause failure of the system. Core in CT is to 

generate a minimum set of test cases, a covering array, that satisfies N-wise coverage. The 

covering array stores the testing configurations where each row of the array can be regarded 

as a set of parameter values for a specific test. Computation cost can be significantly reduced, 

and test efficiency increased with a good covering array. However, to find a minimum covering 

array is an NP-hard problem. Here, NP stands for nondeterministic polynomial time, meaning 

that if someone gives you a proposed solution, you can check its correctness quickly (in 

polynomial time). NP-hard means that the problem is at least as hard as the hardest problems 

in NP; no known algorithm can guarantee an optimal solution quickly for all cases, and it is 

widely believed none exists. In practical terms, the time required to find the minimum covering 

array grows explosively as the number of parameters and values increases. 

As N-wise coverage can only be defined on discrete parameter space, continues variables in 

the parameter space of logical scenarios must be handled. One approach is to discretize them 

assigning specific values to them. Another approach is to perform the CT in two steps. In the 

first step, CT is done over all discrete parameters. Then optimization is conducted through 

simulations on all continuous parameters for each combination of discrete parameters. Other 

approaches to generate covering arrays besides on focusing on minimizing the number of test 

cases is also possible. There are examples where the generated covering matrix fulfils not 

only the N-wise coverage but also maximizes the overall complexity of all the scenarios.  

3.3 Guided search 

If little is known about the parameter space to be explored, a guided search can be an effective 

strategy. In a guided search, testing is performed in several rounds, with the results from 

earlier tests are examined and used to select a new set of parameters that are more likely to 

perform well. There are two main ways to guide this selection process. One approach uses 

prior knowledge about how the quality of a test can be measured. In other words, it relies on 

understanding the rule or calculation that tells us how good or bad a particular parameter set 

is and uses this information to choose the next points to test. The other approach is driven by 
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data. Here, past results are analysed using machine learning techniques to predict which 

parameter sets are most promising for the next round of testing. Generally, guided search 

aims to minimize or maximize an underlying function, called the objective function. This 

objective function describes the problem to be solved. In this case, it is the performance of the 

CCAM vehicle in the logical scenario. The objective function therefore maps a combination of 

parameters, a concrete scenario, to a performance value based on a metric.     

Guided search approaches, especially those based on data, allow for the identification of 

Parameter Subspaces. As such these approaches have been the major focus of development 

within the SUNRISE project and are discussed in Chapter 4. 

3.3.1 Optimization based on logic 

Methods that follow under this approach use information that is available on the problem to 

find improved samples. The most commonly found methods in this category are minimizers 

that utilize use the derivative of the objective function. An example of such a method is gradient 

decent. Gradient descents find the minimum by iteratively moving towards the direction that 

minimizes the objective functions the most from a starting point, which means in the opposite 

direction of the gradient of the function at the respective points. The problem with such 

methods is that the gradient must be known. This means that they do not work for black-box 

problems that are more commonly encountered in the application for safety assurance. An 

additional problem is the strong dependence on the starting point choice which might lead to 

local minima but not to the targeted global minimum. 

3.3.2 Optimization based on data 

Methods that follow this approach leverage machine learning approaches to learn from data 

collected by iteratively exploring the parameter space of the logical scenario. Common 

methods include the creation of a surrogate model by using a Gaussian Process Regressor 

or Classifier. The surrogate model is a representation of the objective function, in our case the 

evaluation metric, based on data collected by previous evaluations. This surrogate model can 

then be used by optimization approaches like Bayesian Optimization to find new sample 

points, which can then be used to further improve the surrogate model. 

Iterative methods focus on iterative optimization techniques to obtain increasingly complex 

scenarios, often using accident databases as a starting point or defining criticality metrics. For 

instance, [27] calculates a safety zone beside the vehicle as a measure of criticality and uses 

evolutionary algorithms to maximize it. In [28], sensor phenomenological models are built to 

identify complex test scenarios for perception capacities, while other approaches include the 

autonomous vehicle within a feedback loop, using evaluation results to determine the next 

scenario. Reinforcement learning techniques for optimizing scenario criticality are also 

proposed in [29] and expanded upon in [30] and [31]. 

One approach that falls under this category is importance sampling. In importance sampling, 

the scenario parameters are sampled from an importance density distribution. This enables 

focusing the assessment of a system on scenarios in which the system-under-test is 

challenged. By weighting the results based on the importance density and the original 
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distribution, one can obtain unbiased results despite sampling from a different distribution. It 

is, however, not straightforward to determine the importance density.  

In [32] and [14], an iterative approach to determine the importance density is proposed. First, 

a multivariate distribution of the scenario parameters is estimated based on the parameter 

values of a set of scenarios that are observed in the real world. Next, simulations are 

conducted of scenarios in which the parameter values are sampled from the estimated 

probability density function. This is also known as crude Monte Carlo sampling [14]. Then, the 

results of the simulations are ordered according to a chosen metric that quantifies the severity 

of the outcome of the simulation run. This could be the minimal time-to-collision, but other so-

called surrogate safety metrics are also possible. Then, based on a chosen percentile of "most 

important" scenarios (according to the chosen metric), earlier generated scenarios are 

selected. Using the same approach to determine the original distribution based on the 

parameter values of the real-world scenarios, the importance density is constructed using the 

selected scenarios instead of the real-world scenarios.  

The advantage of this approach is that the importance density is based on the outcome of an 

initial round of simulations, thereby adapting to the capability of the system under test. In 

theory, this approach can be applied iteratively in order to focus more and more on the more 

challenging scenarios. The required initial round of simulations can also be considered as a 

disadvantage: this may require significant computational time. Therefore, if there is already 

knowledge upfront on what might be safety relevant parameter values, it may be worthwhile 

to do the initial round of simulations with a density based on this knowledge. 

Recent Artificial Intelligence (AI) methods leverage generative or “trustworthy AI” models to 

create specific scenarios, often more critical or significantly different from those in real-world 

data. In [33], the authors provide a synthesis covering this topic, mentioning numerous works 

that use adversarial attacks to challenge AI models, generating hard-to-classify scenarios from 

real data that represent challenges for autonomous driving. In [34], an autoencoder’s 

reconstruction error serves as a novelty indicator for finding high-novelty scenarios, an idea 

expanded in [35], where the authors use Generative Adversarial Networks (GANs) and a 

Variational Autoencoder (VAE) to both extract existing scenarios and generate new ones from 

them. 

3.4 Other Approaches 

In this section, a sampling and selection approach is discussed that does not fit in the 

concretization categorisation shown in figure 5. 

3.4.1 Knowledge-Based Approaches  

These approaches use abstract information, such as standards, guidelines, or expert 

knowledge, for scenario generation, often through ontologies that represent knowledge, 

properties, and relationships, enabling automatic generation of test scenarios as valid 

combinations. For example, in [36], the authors combine a highway ontology, a weather 

ontology, and a vehicle ontology, modelling relationships between them. Other multi-step 

ontology applications are presented in [37] and [38].  
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4 SUBSPACE CREATION APPROACHES 

This chapter gives an overview over of sampling and selection approaches that have been 

developed in more detail within the SUNRISE project, to be used as part of the Concretization 

component of the Query & Concretize block of the SUNRISE SAF. 

While the last chapter has introduced general categories and selection and sampling 

approaches, the focus in this chapter is to present approaches that have been developed for 

the SUNRISE project, extended for the project, or used to demonstrate project use cases. A 

focus of this chapter is the use of Parameter Subspace Creation to guide the concretization 

approaches. This chapter starts with a section on general process steps for scenario 

concretization and how they can be implemented. Following section introduce different 

approaches, starting with an implementation of the popular LHS method introduced in the last 

chapter and then introducing more complex methods.  

4.1 Subspace Creation Methodology 

Not all the parameter space of a logical scenario needs to be tested with the same amount of 

effort. Some regions of the space might not be challenging, with large changes in parameters 

do not influence the outcome and some parts of the parameter space might contain concrete 

scenarios, where crashes are unavoidable. To focus testing where it is needed, a special focus 

is to be put on parameter Subspace Creation and a methodology to achieve this. The goal is 

to identify parts of the parameter space where testing is most required. It is important to 

mention that the subspaces do not have to be discrete and separate spaces. Another way to 

view them is a statistical distribution over the entire parameter space.  

While our goal is the usage of methods that allow for Parameter Subspace Creation, 

depending on the problem simpler methods might be sufficient. However, showing that testing 

in a specific part of the parameter space is sufficient requires guided methods that can 

iteratively explore the parameter space. In this chapter, we introduce approaches to solve this 

problem with surrogate modelling. These approaches replicate the performance of the CCAM 

system with a model. The uncertainty in this model guides both the sampling in certain sub-

spaces and can be used as a coverage criterion to evaluate when enough testing occurred. 

4.2 Process Steps for Scenario Concretization 

To instantiate logical scenarios into concrete ones, it is necessary to assign specific, feasible 

values to all free parameters. The presented approach considers parameters such as the 

initial conditions of dynamic systems and sensor configurations, which remain invariant 

throughout the simulation, in contrast to parameter trajectories that evolve over simulation 

time. The concrete instantiations of one logical scenario with N parameters can be interpreted 

as points in an N-dimensional cartesian coordinate frame. Due to the above-mentioned 

constraints, only a subset (potentially non-convex) of the N-dim. space is feasible.  
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Another important aspect of scenario-based testing is the definition of appropriate evaluation 

criteria for the scenario results. In this approach the test cases are assessed as passed or 

failed depending on whether one of the following metrics lies below predefined thresholds:  

1. Minimum Time-to-collision (TTC): For every simulation time step the TTC between ego 

and other vehicles is computed. The minimum TTC value encountered during the 

entire simulation is used for evaluation.  

2. Minimum distance: The minimum distance between ego and other vehicles that 

occurred during the simulation must not fall below a certain value.  

For the majority of practically relevant scenarios, performing an exhaustive search within this 

subset is computationally infeasible, particularly when the parameters are real-valued. One 

possibility to solve this issue is applying techniques from statistical sampling or pseudo-

random sequences with decent space-filling properties to generate a representative collection 

of concrete scenarios. Latin Hyper-Cube Sampling and Sobol Sequence are supported by the 

presented approach. Because all concrete scenarios are created independently from each 

other, these methods are called “open-loop” for the remainder of this section. One drawback 

of open-loop techniques is that they do not favour critical / failed test cases, i.e., it is a matter 

of computation effort (number of test cases, density of points in parameter space) and “luck” 

whether they are found or not.  

To address this issue, closed-loop methods employ optimization techniques to identify critical 

parameter combinations in the feasible parameter space. Beginning with an initial estimate - 

comprising one or more distinct samples - the simulation outputs are evaluated using an 

objective function that quantitatively represents a safety metric. Based on that the next 

selected parameter combinations are guided towards failed test cases w.r.t. above defined 

criteria. Since the evaluation process involves executing the full simulation framework 

(including the ADF, vehicle dynamics, and related components), analytical gradients or 

Hessians are not available. Consequently, derivative-free optimization methods are utilized. 

Figure 7 depicts the principle of the approach schematically. The circular information flow within 

the “optimization problem solving” block motivates the term “closed-loop”. The “execute” block 

contains the boundary for controlling the simulation environment and retrieving the necessary 

data for computing the safety-related objective function. Since this is a step, which typically 

consumes considerable amounts of time, it should be invoked as rarely as possible. To 

provoke failed test cases the objective function is chosen as a weighted combination of 

minimum-TTC and minimum-distance.   
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Figure 7: High-level process steps for scenario concretisation. 

In the presented implementation, the user can choose from several state-of-the-art black-box 

optimization algorithms. Particle swarm and surrogate optimisation proved to be particularly 

useful regarding the number of iterations (simulation) required to reach critical cases. These 

algorithms are described in more detail in [39], which has been accepted for publication. 

Figure 8 illustrates the results obtained from via the open-loop method for a logical scenario 

where the ego vehicle does a right turn and must give way to another vehicle coming from the 

left. Three parameters (other's speed, sensor horizontal field-of-view, and sensor range) are 

varied. Every marker indicates one tested concrete scenario, and the colour represents the 

evaluation result. The closed-loop result for the same scenario is shown in Figure 9. Due to the 

guided searching approach, the number of simulations is significantly smaller than in the open-

loop case. It is important to mention that different scenarios and parameter space dimensions 

can effect the necessary amount and distribution of initial guesses. However, this was not 

explicitly consider in this approach. 

 
Figure 8: Open-loop test evaluation results for an intersection scenario. Each point represents one 

executed simulation, and the colour indicates the test case result. 
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Figure 9: Optimisation-based scenario concretisation result. The approach searches explicitly for low 

TTC and distance values. 

 

avoidance. The results, along with the corresponding input parameters, are then documented 

and passed to the Bayesian optimization module. 

4.3 Constrained Latin Hypercube Sampling 

This work uses a constrained Latin hypercube for sampling the simulation parameters. The 

main difference is that some predefined constraints are verified while generating the 

hypercube samples to decrease the amount of spurious generation. This choice falls in the 

near-random, non-distribution naïve sampling category. This choice is based on the attempt 

to fill the sampling space with a reduced number of samples, thereby decreasing the required 

number of simulations and reducing the computational cost of the analysis. We illustrate below 

the Latin Hypercube Sampling algorithm: 
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A Latin Hypercube Sampling is a process that involves generating a hypercube, where each 

dimension represents a parameter to be sampled (e.g., the x and y starting positions of the 

vehicles to be simulated, their speed, their model, and the weather). Each variable is assigned 

a certain range of possible values (e.g., the initial speeds of the vehicles shall go from 10 to 

60 km/h). Once the hypercube is created, the sampling process begins by dividing each 

dimension into a finite number of intervals (e.g., the possible speeds will be divided into 

intervals of 5 km/h each). Each of these intervals will be sampled randomly, but only once. 

The next step (and the last one for a classic Latin hypercube sampling) is to group the obtained 

samples of each variable by grouping one of the sampled initial speeds with one of the initial 

X positions with one of the vehicle models, etc. This way, the whole sampling space, although 

not entirely covered, could be significantly represented in the sampling results while reducing 

the number of required samples in comparison to naïve random sampling. In Figure 10, a 2D 

representation of a Latin hypercube is shown (a), in which each variable is divided into 

intervals, and a single sample is taken from each interval of each of the two dimensions (b): 

 

 
Figure 10: Latin hypercube structure. 

 
The final step is to add some constraints to the results. Since the simulations are supposed to 

represent a 3D world with realistic objects in it, there are some limits to what is worth 

simulating. In particular, the initial positions of the vehicles as well as their models are 

considered and checked to see if any of the generated samples would cause the overlapping 

of two or more vehicles. This situation is not feasible in the real world, so it would not make 

sense to simulate it. Therefore, these sampling pairs are rejected, and those samples are 

reassigned to another group. If it is impossible to find a valid group for those samples (which 

rarely happens), the space is resampled for new variable values. 

In Figure 11, several samplings are shown. The dots represent the starting position of the 

simulated vehicles (the horizontal axis represents the width of the road starting from a fixed 

coordinate (here represented as 0). In contrast, the vertical axis represents the road’s 

longitudinal dimension). The rectangles are a representation of the size of each vehicle. If the 

dots are blue, the sampling is feasible and therefore valid. If the dots are red, an overlap in 

some of the vehicles was detected, so the sampling is considered invalid, and either a re-

grouping or re-sampling will be performed. 
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Figure 11: Latin hypercube samplings. 

 
Figure 12 shows the result of the constrained Latin hypercube sampling. In it, all the sampled 

groups are valid because there is no longer any overlap between vehicles in any of the 

configurations. Therefore, all the points are shown as blue: 

 
Figure 12: Constrained Latin hypercube sampling results. 

4.4 Method for boundary point detection 

As mentioned in the paragraph on importance sampling in section 3.3.2, one of the challenges 

in scenario-based testing is selecting interesting points from the parameter space of a logical 

scenario when the parameter space is too large for exhaustive search. Typically, a specific 

pass-fail criterion is linked to the system under test and the logical scenario. This criterion 

evaluates the outcome of a concrete scenario and determines whether the system's behaviour 

is safe or unsafe. The goal of this method is to focus on boundary cases in the parameter 

space, where minor variations in a parameter vector can determine pass or fail outcomes. 
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These points lie at the boundary between the pass and fail regions and likely expose the 

system under test to a situation it can “barely” or “nearly” handle. Points away from the 

boundary are likely less interesting because the system either passes without facing a 

challenge or fails without having a chance. 

The following method has been first introduced in two master theses, [40] and [41]. The most 

important prerequisite to apply this methodology is that a first sampling was already applied, 

or first data is available already covering the parameter space sufficiently. Sufficient in the 

sense of having no big gaps in the parameter space and boundary points exist that can be 

determined by this method. Additionally, the result data must be divided into two results e.g., 

safe and unsafe. This method relies on a cost function returning binary output and the method 

is therefore independent of the metrics used, the thresholds of the metrics, and how they were 

combined within the cost function e.g., AND, OR, and XOR condition.  can be applied 

iteratively several times. The main goal of this methodology is to increase the sampling density 

surrounding the boundary points and not to detect gaps in the sampling region. Therefore, if 

already the first data does not cover a region of unsafe sample points, also an iterative 

application of this methodology will also more likely not identify these. But this depends on the 

sampling methodology applied for the resampling, which could also include other points in the 

parameter space, except for the boundary conditions returned by this methodology. The 

prerequisite for the sampling methodology for the resampling is the inclusion of boundary 

conditions. 

To describe this procedure in more details, assume a sample of parameter vectors is drawn 

from the parameter space of the logical scenario, and each parameter vector is simulated and 

evaluated by the pass-fail criterion. Figure 13 depicts two examples where the safe sample 

points are shown in green, the unsafe ones in red, and the boundary between safe and unsafe 

regions in blue. 

 

 

Figure 13: Examples of samples with safe points in green and unsafe ones in red. 

 
The goal is to detect the boundary (or uncertain) points at the boundary between safe (green) 

and unsafe (red) regions. Here, a safe point is a boundary point if one of its “neighbours” is 

unsafe, as shown in Figure 14. The concept of “neighbours” is described in the following 
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paragraph by looking at the intuitively clear case of regular grids and introducing a small 

adjustment which is applicable to randomly chosen samples. 

 

Figure 14: Samples with boundary points in blue. 

 
If the sample points are located on a regular grid as in the left example of Figure 13, it is 

intuitively clear that two distinct points are neighbours if they differ by at most the step length 

in each coordinate. In this case, one can check the 3𝑑 − 1 𝑑 Figure 15 for two and three 

dimensions, the selected point (green) is a boundary point if it is safe and any of its neighbours 

(black) is unsafe. In the figure, h1, h2, and h3 denote the step lengths of the axes. 

 

Figure 15: Neighbour points (black) of the origin (green) in regular grids in 2D (left) and 3D (right). 

 

This idea was used in the left example of Figure 14. However, 3𝑑 − 1 grows exponentially with 

the dimension; thus, one might only check the 2 ⋅ 𝑑  neighbours along the parameter axes in 

high-dimensional spaces. In randomly chosen sampling, such as in the right example of Figure 

13, it is not inherently clear which points are the neighbours of a given point. The idea here is 

to search neighbours along (or close to) the coordinate axes. To this end, assume in the 

following that the parameters are adimensional or normalized (so that parameters of 

potentially different physical units can be compared) and a metric for measuring the distance 

between sample points (such as the Euclidean norm) is specified. Then, for example, along 

the negative first axis, 𝑞⃗ is defined to be a neighbour of 𝑝 if the difference 𝑑 = 𝑞⃗ − 𝑝 satisfies 

−𝑑1  > max  {|𝑑𝑗|;  𝑗 = 2,   … , 𝑑 } and 𝑞⃗ is the closest point to 𝑝 that satisfies this condition. 

The purpose of the condition on 𝑑1 is to ensure that “main direction” of 𝑑 is the negative first 

axis in the sense that 𝑑1 is negative and its absolute value is bigger that of other coordinates. 

To see that it makes sense, Figure 16 depicts an example with four points in the xy-plane. The 
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region of points satisfying the condition −𝑑1 > |𝑑2| is shown in grey (the “main direction” of 𝑑 

is the negative x-direction). Thus, 𝑞⃗ is the neighbour of 𝑝 in negative x-direction since 𝑟 is farer 

away from 𝑝 and 𝑠 lies in the search region for neighbours in positive y-direction. 

 
Figure 16: 2d example for searching neighbours of a point 𝑝 in negative x-direction. 

This idea is repeated along all directions and for each point in the current sample. As a result, 

the boundary points in the current sample are identified such as the blue points in Figure 14. 

As mentioned at the beginning of this section, the identification of these points is the goal of 

this method. Thus, the investigation of the current sample is finished. 

Optionally, the boundary identification method can be applied iteratively in order to increase 

the precision of the boundary. However, such an iterative process relies on a re-sampling 

strategy. Such a re-sampling strategy should aim at making the currently identified boundary 

more precise and at revealing unseen boundaries. ℎ > 0  for the safe-unsafe-boundary and 

𝐻 > 0  for whole parameter space of the logical scenario. Then, an example of a re-sampling 

strategy consists of the following three steps: 

1. As a first step, to make the currently identified safe-unsafe-boundary more precise, proceed 

as follows: 

• For each current boundary point and each direction, check whether the distance to the 

neighbour is larger than ℎ . 

• If yes, generate a new sample point inside the search region at a distance smaller than 

ℎ . 

• If the current point has no neighbour in the current direction and if the distance to the 

outer boundary of the parameter space is larger than ℎ , then also generate a new 

sample point inside the search region at a distance smaller than ℎ . 

2. As a second step, to (hopefully) reveal new safe-unsafe-boundaries, replace the boundary 

points by the non-boundary points (both, safe and unsafe ones), replace ℎ  by 𝐻 , and 

repeat the first step. Optionally/Alternatively sample (e.g. uniformly) from the whole 

parameter space. 

3. As third step, evaluate each new sample point as safe or unsafe by the pass-fail-criterion, 

add these points to the current sample, and start the next iteration.  

As final remark, notice that this method is limited to continuous data and not applicable for 

discrete (unsorted/nominal) data (e.g., what is the neighbour of sunny weather conditions?). 

In summary this method has the following limitations: 
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• This method describes one sampling iteration step rather than a complete sampling 

method, which means another method for initial sampling and optionally for potential 

resampling is required. 

• Method not applicable for unsorted discrete data (neighbours and boundary unclear) 

• Method relies on safe-unsafe characterisation of data points (e.g., by the usage of a 

cost-function with all its limitations) 

• Data needs to be normalised, and neighbour points are found by applying distance 

metrics (e.g., equivalent distances to angular neighbour points and velocity neighbour 

points) 

• Description (especially machine-readable) of multidimensional boundary volume 

(multidimensional boundary surface of specific thickness) for potential resampling not 

defined (outputs of this method are clusters described by the boundary sample points 

identified) 

4.5 Equiprobable partitioning of the parameter space 

One of the key challenges in scenario-based CCAM testing is selecting a meaningful and 

representative subset of scenarios from a vast parameter space, where exhaustive sampling 

is infeasible. This approach addresses this challenge by leveraging deep generative models 

to construct structured subspaces, enabling efficient scenario selection and optimal coverage 

assessment. This approach is rooted in transforming the high-dimensional representation of 

driving scenarios into a latent space with a known probability distribution, facilitating a rigorous 

evaluation of dataset completeness. Unlike traditional scenario selection methods that rely on 

fixed parameter grids or probabilistic sampling techniques such as Monte Carlo or Latin 

Hypercube Sampling, the approach introduces a novel paradigm that ensures a structured, 

equiprobable partitioning of the scenario space, significantly improving selection efficiency and 

test relevance. 

 

Figure 17: Utilizing a 2D Gaussian distribution to create  equiprobable zones with equidistant circles 

and the radii method for achieving representative sampling. 

As depicted in Figure 17 the transformation of scenarios into a latent space enables a 

structured partitioning, where the known Gaussian distribution allows for equiprobable 
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sampling of test cases. The method relies on Variational Autoencoders (VAEs)  to convert the 

unknown distribution of real-world driving scenarios into a structured latent space, ensuring 

statistical consistency in scenario selection. A VAE is a type of neural network architecture 

used for unsupervised learning, that learns a probability distribution over a latent space.  The 

transformation performed by the VAE allows for the definition of subspaces where critical and 

non-critical points are clearly delineated, enhancing the ability to detect underrepresented 

driving situations. 

To further refine the completeness assessment, the approach employs an equiprobable 

discretization strategy, dividing the latent space into zones of equal probability mass rather 

than using arbitrary parameter grids. This approach, illustrated in Figure 18, ensures that 

scenario sampling maintains statistical representativeness while reducing redundancy. 

The first methodological step transforms the unknown, high-dimensional distribution of real-

world driving scenarios into a known, structured latent space. This is achieved using a Factor 

β-Variational Autoencoder (β-VAE), which balances reconstruction accuracy with 

disentanglement and normality of latent features. A cyclical KL-annealing schedule is used to 

stabilize training, enabling the model to produce a centred, reduced 2D Gaussian distribution 

in the latent space. This choice of latent representation ensures feature independence and 

radial symmetry, which are crucial for the next step. 

Once in this 2D Gaussian latent space, the continuous representation is discretized into 

equiprobable zones, areas of equal probability mass, rather than arbitrary parameter grids. 

This is implemented by dividing the latent space into concentric circles of equal probability, 

intersected by evenly spaced radii, directly yielding a set of equiprobable partitions. This 

structured partitioning guarantees statistical representativeness and avoids redundancy in the 

test set. 

The required number of zones is determined statistically using the Central Limit Theorem 

(CLT). For a target confidence level and margin of error, the necessary sample size 𝑛 is 

calculated from: 

𝑛 =  (𝑍𝛼 2⁄

√𝑝(1 − 𝑝)

𝐸
)

2

 

where 𝑝 is the estimated occurrence rate, 𝐸 the desired precision, and 𝑍𝛼 2⁄  the z-score for the 

confidence level. For example, with𝑝 = 0.002, E = 0.001, and Z = 3.29  (99.9% confidence), 

the required sample size is approximately 21,605. The number of equiprobable zones is then 

matched to this target. 

The final step assesses coverage by counting non-empty zones in the latent space. Empty 

zones are decoded back to the original parameter space via the VAE decoder, identifying 

missing scenarios and enabling the generation of synthetic test cases. This is particularly 

valuable for capturing rare but safety-critical events such as near-miss collisions or sudden 

cut-ins. 
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Missing scenarios can be identified through an inverse mapping of the latent space back to 

the original scenario parameterization, enabling the generation of synthetic test cases to fill 

the gaps in underrepresented regions. This process is particularly valuable in ensuring that 

rare but safety-critical driving situations, such as near-miss collisions or sudden cut-ins, are 

adequately represented in validation datasets. 

The steps of this methodology are described in more detail in [42]. 

 
Figure 18: Steps in the methodology. 

 
By integrating deep generative modelling with a robust statistical sampling methodology, the 

presented approach significantly enhances the effectiveness of scenario-based CCAM 

testing, as shown in [42]. It not only improves the efficiency of scenario selection but also 

ensures that the test set captures a diverse and representative range of driving situations, 

ultimately strengthening the safety validation process for autonomous driving systems. 

4.6 Active design of experiment method 

Active Design of Experiments (DoE) Sampling Method is an innovative approach to scenario 

sampling and selection. This methodology, categorized as an adaptive and guided search 

technique, aims to achieve maximum coverage of scenarios while minimizing the number of 

simulation-runs. It places particular emphasis on critical and safety-relevant areas within the 

scenario space. 

The methodological concept behind Active DoE distinguishes it from classical random 

sampling or space-filling techniques, such as Combinatorial Sampling. Instead, Active DoE 

employs a closed-loop learning process that integrates machine learning surrogate models 

with scenario sampling. This integration allows for continuous evaluation of the scenario 

space, identifying regions that are underrepresented, uncertain, or crucial for understanding 

system behaviour. 
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The overarching goal of Active DoE is to prioritize testing in areas that have the most 

significant impact on key performance indicators, such as safety and comfort. By focusing 

resources on high-impact regions, this method effectively reduces unnecessary simulation 

efforts in low-risk areas. 

Active DoE is used within the SUNRISE project with the AVL CAMEO™ software, and this 

approach is seamlessly integrated with AVL Scenius SCDB, facilitating easy configuration and 

triggering of the concretization process within a SCDB. This integration enhances the 

efficiency and effectiveness of scenario testing in various applications. 

 

4.6.1 Step-by-Step Workflow of Active DoE Sampling: 

Definition of Scenario Parameter Space: 

The first step in the Active DoE process involves defining the overall scenario parameter 

space. This means identifying all the input parameters that describe the variability of the 

driving scenarios. These parameters may include Ego and Target vehicle initial speeds, 

Lateral and longitudinal positions and environmental conditions (e.g., road friction, weather) 

 

Figure 19: Parameter Space Definition in Active DoE. 

 
Definition of the Critical Region 

Once the full scenario space is defined, the next step is to identify which regions of this space 

are considered critical. Critical regions are defined as areas where the ADAS/AD system 

performance is sensitive, risky, or likely to produce safety-relevant outcomes (e.g., near-miss 

situations). 

The remaining scenario space, where the system is known to behave safely and predictably, 

is marked as the non-critical region. Time-to-Collision can be used in order to assess the 

criticality. On the example below the critical region for the Cut-In scenario has been chosen 

where the minimum TTC is between 1 and 3 seconds, and the optimization will try to minimize 

the TTC to 1 second.  
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Figure 20: Critical Region Definition in Active DoE. 

 

4.6.2 Configuring the sampling iterations 

Active DoE method allows detailed configuration of the sampling, stopping criteria, and model 

quality settings. 

Table 1: Active DOE Configuration. 

Parameter Description 

Stop Criteria – Max Iterations This setting limits the maximum number of Active DoE 

sampling iterations. After each iteration, the surrogate 

model is retrained, and new points are selected. The 

process stops when either this maximum iteration 

count is reached or earlier if quality thresholds are 

satisfied. 

Quality Threshold The minimum value for the model quality to be 

considered by the strategy. If a model has a calculated 

quality below this value it is considered useless. 

Stop Criteria - Min Quality This is a hard stop quality level. Even if the Max 

Iterations limit is not reached, the process will 

automatically stop when the surrogate model 

achieves at least this minimum quality threshold 

across all relevant KPIs. This prevents unnecessary 

simulation runs once the desired model quality is 

reached. 

Sample Size This defines the total number of resulting scenarios. 
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Figure 21: Simulation Configuration in Active DoE. 

Initial Sampling and Model Building: 

Active DoE begins with an initial, sparse sampling of the scenario space. These initial 

simulations are used to train a machine learning-based surrogate model that predicts system 

behaviour across the entire space. 

Model Quality Metric: 

To assess the surrogate model’s performance, we apply a Normalized Accuracy Score that 

reflects how closely the model predicts safety-relevant KPIs: 

𝑄 = 1 −
∣ 𝑦̂ − 𝑦 ∣

𝑟𝑎𝑛𝑔𝑒(𝑦)
 

      Where: 

• 𝑦: Ground truth KPI from simulation 

• 𝑦̂: Surrogate model prediction 

• 𝑟𝑎𝑛𝑔𝑒(𝑦): Acceptable KPI range 

 
This score: 

• Improves as the model's prediction approaches the actual simulation result 

• It is bounded between 0 (poor) and 1 (perfect) 

 
Adaptive Resampling and Model Refinement: 

The surrogate model is iteratively refined by focusing additional simulations on regions 

where: 
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• The model’s prediction error is high. 

• System behaviour is highly non-linear or sensitive. 

Objective Stopping Criteria: 

Sampling continues until objective, KPI-based quality metrics indicate that both critical and 

non-critical regions are sufficiently modelled according to the Normalized Accuracy Score 

metric. 

Final Model Validation: 

Once the model quality meets predefined targets, the final selected scenario set is used for 

detailed system testing and validation. 

Concretizing UC 2.1 Target Cut In Scenarios with Active Design of Experiments 

We used the SAF UC 2.1 TJA Target Cut-In scenarios for experimenting with the AVL-

Approach. The full Factorial design spans 4 000 test cases (20 × 20 × 5 grid of Ego Speed, 

Target Speed and Deceleration). Within this space, the safety-critical region is where Ego 

Vehicle Speed and Target Deceleration Rate values are higher while Target Vehicle Speed 

values are slower. The criticality metric used for evaluation is Minimum Time to Collision 

values lower than 2 seconds. The total number of safety relevant concrete test cases are 17 

(0,425% of the total). By contrast, the AVL procedure, through adaptive sampling iterations, 

identified 15 of these critical points (covering 88 % of the critical region) and discarded the 

remaining non-critical cases. This targeted approach demonstrates how Active DoE can 

reduce simulation effort by two orders of magnitude while still achieving near-complete 

coverage of the most dangerous, safety-relevant subspace. 

 

Figure 22: Full Factorial vs Active Design of Experiments Results. 

4.7 Bayesian Optimization Approach 

Bayesian optimization is used to optimize objective functions that are time-consuming to 

evaluate. It employs Gaussian Process (GP) models to derive a prior over the black box 

function being optimized. The GP models assume the function values to be random variables 

modelled by a joint Gaussian distribution. The mean and variance of the distribution are 
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estimated for unobserved values, and an acquisition function is used to sample the surrogate 

function, deriving a posterior distribution. 

The pass criteria, derived from System-Theoretic Process Analysis (STPA), are treated as the 

optimization objective. The objective function, denoted as ρ(w), represents the pass criteria in 

terms of exact parameter values. The optimization algorithm samples parameters to ensure 

ρ(w) < 0, indicating a violation of the pass criteria. This involves logical combinations of 

constraints (predicates) that are smooth and continuous functions of a trajectory ξ. 

The chosen acquisition function is Expected Improvement, which balances exploration and 

exploitation to find a global minimum. In the context of Bayesian optimization exploration refers 

to sampling points in areas of high uncertainty to discover potentially better solutions, while 

exploitation focuses on sampling where the model already predicts high performance. The EI 

function balances these by favouring points that either have a high chance of improvement or 

are uncertain enough to be worth investigating. The utility function rewards improvements over 

the minimal value observed so far. 

The test scenario generator aims to find parameter values that refute the pass criteria ρ. The 

process involves: 

• Deriving Parameter Sets: The pass criteria are converted into a set of predicates, each 

representing a constraint. These predicates are combined using logical operations to 

form the objective function ρ. 

• Bayesian Optimization: The algorithm iteratively samples parameter values using the 

acquisition function to minimize ρ. Each sample is evaluated, and the results are used 

to update the GP model. 

• Iterative Sampling and Evaluation: The process continues until the pass criteria are 

violated or the time budget is exhausted. 

• Identifying Multiple Minima Regions 

To identify multiple minima, the algorithm eliminates already explored minima from the search 

space by squaring the function, making all minima rise above zero. The search continues in 

each parametric direction, recursively eliminating regions containing minima. This process 

ensures the identification of all regions containing minima. 

The first algorithm, Bayesian Optimization for Failure Identification, aims to pinpoint the  

parameter values, for the identified set of parameters that lead to failure in automated vehicle 

testing scenarios. Inputs identified from the STPA analysis are fed into the Bayesian 

Optimization module, which iteratively determines parameter values such as pedestrian 

speed, angle, vehicle speed, and deceleration rate that could cause failure. After each 

iteration, the samples are sent to a simulator for stochastic evaluation. This process continues 

until a specification is violated or a predefined coverage threshold is reached. The primary 

goal is to find a global minimum, representing one of many test cases that lead to failure. 
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Algorithm 1: Sampling Using Bayesian Optimization 

Input: 

 Bounded Parameter vector W from STPA Step 3 

 Pass criteria from STPA Step 2 

 Initial Condition vector: I 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Comments: 

 α: Expected Improvement (acquisition function) 

 Dₙ: Observed (input, output) pair from sampling 

 yᵢ: Output of the system for the ith input 

 

The second algorithm, Recursive Search for Multiple Minima, is designed to identify multiple 

minima of a continuous function, each representing different failure conditions. We propose a 

methodology to direct the search to find other minima of the continuous function f: W → R, 

where W is a compact subset of Rd, and previously explored minima are eliminated by 

squaring the function, which raises all minima above zero. Zeros surrounding the minima in 

each parametric direction are identified, and the valleys containing the minima are excluded 

from further consideration. A new search begins recursively in each parametric direction. The 

search occurs over an n-dimensional hyperspace defined by parameters W1, ..., Wn, with a 

stack (regionsStack) storing regions to be explored, starting with the entire region. After 

discovering each minimum, the region is split to eliminate the valley containing the minimum, 

using hyper-rectangular abstractions around the minima. The algorithm terminates when 

regionsStack is empty. A step size (λ) is used to demarcate the region surrounding the 

discovered minimum, defining rectangular constraints for elimination. New search regions are 

constructed for each dimension based on zero points and bounds. If no zero is found within a 

distance λ, the search resumes with a larger λ. The choice of λ is a hyper-parameter set based 

on domain knowledge 
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Algorithm 2: Sampling Using Bayesian Optimization 

Input: λ 

 Global Variable: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The methodology is applied to a case study involving dynamic elements like pedestrian speed, 

angle, subject vehicle speed, and deceleration rate. Bayesian Optimization identifies 
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parameter values leading to failure conditions, demonstrating the effectiveness of the 

approach in finding global minima and other failure-inducing test cases. 

This section discusses the results of experiments on non-convex functions and test scenarios. 

A. Identifying Multiple Minima Regions for Non-Convex Functions 

The first tested function is the Holdertable function, defined by  

 

𝑓(𝑥, 𝑦) = − |𝑠𝑖𝑛(𝑥) ∗ 𝑐𝑜𝑠(𝑦) ∗ 𝑒(1−√(𝑥2+𝑦2)/𝜋)| | 

 
which causes four global minima to occur at (x,y) = (8.05502,9.66459), (8.05502,−9.66459) 

(−8.05502,9.66459), (−8.05502,−9.66459) for all of these f(x,y) = −19.2805. 

The second function is the Eggholder function defined by 

 

𝑓(𝑥, 𝑦) = −(𝑦 + 47) ∗ 𝑠𝑖𝑛√|𝑦 + 𝑥/2 + 47| − 𝑥 ∗ 𝑠𝑖𝑛√|𝑥 − (𝑦 + 47)| 
 

This function has one global minimum at f(512,404.2319)=−959.6407. Both functions have 

multiple local minima. 

The third function is of the form,  

𝑓 (𝑥1, 𝑥2  … 𝑥𝑛)  = 𝑥1 ∗ 𝑥2 ∗ … .   ∗ 𝑥𝑛 
 

where the number of minima increases with increasing dimension as 2d-1. The algorithm is 

tested up to 10th dimension. 

The algorithm's performance on different non-convex functions is summarized in Error! 
Reference source not found. showing the domain, step size λ, and identified minima 
regions for each function. 

 
Table 2: Performance of Algorithm 2 on different nonconvex functions. 

Function Domain λ Identified Minima Regions 

1 x:[−10,10], y:[−10,10] 2 56 

2 x:[0,512], y:[0,512] 100 275 

3 Each xi:[−50,50] 50 512 
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B. Testing the Pedestrian Scenario Generated from STPA 

Scenario Modelling: A scenario generated from STPA is modelled in IPG Carmaker. The 

domain of uncertainty includes: 

• Subject vehicle velocity: [40 km/h, 60 km/h] 

• Pedestrian speed: [5 km/h, 20 km/h] 

• Pedestrian crossing angle: [0 °, 10 °] 

• Deceleration rate after stop command: [3 m/s², 6 m/s²] 

Objective Function: The Euclidean distance between the car and pedestrian is minimized, 

with a collision occurring when √(𝑐𝑎𝑟. 𝑦  − 𝑝𝑒𝑑. 𝑦)2 + (𝑐𝑎𝑟. 𝑥  − 𝑝𝑒𝑑. 𝑥)2. A safety envelope of 

5 m is considered longitudinally (in the direction of the road, ahead of the ego). 
 

 
Figure 24: A visualisation of the simulated collision. 

 

Figure 23: Visualization of the Holdertable function after running Algorithm 2, showing 

identified global and local minima, and eliminated regions. 
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Figure 25: Plot illustrating function value of each sampled point up to 22 samples.  

For Figure 25 above the deceleration for the plot is kept fixed at 3m/s2. Each point represents 

(subject vehicle speed, Pedestrian angle, Pedestrian speed). One of the left zero for the 

identified minima is found at [58.05,4.57°,15.69] and right zero at [58.05,4.57°,19.83]. 

The search space for this problem is extensive, with each point forming a test case. The step 

size λ is chosen as (domain range)/2 for each domain, which can be tuned for faster 

convergence. Multiple test cases were identified, such as [58.06, 4.57 °, 17.82, 3], [47.21, 6.15 

°, 14.88, 3], [60, 0 °, 20, 4], [60, 10 °, 18.59, 3], [42.36, 7.19 °, 11.64, 4], etc. No violations 

were observed over a deceleration rate of 5 m/s², suggesting a safe driving strategy with a 

deceleration rate above 5 m/s². 

 
The study presents a methodology for identifying test cases for complex black boxes like 

autonomous systems with fast convergence. A more detailed exploration of the method is 

available in the full paper [43]. This analysis can help define safe strategies for autonomous 

driving systems. Future work includes optimizing the algorithms by tuning hyper-parameters 

such as λ and searching new regions in parallel, as well as extending the methodology to 

identify parameter values for temporally changing functions and testing over more complex 

scenarios and use cases. 

4.8 Surrogate Modelling with Gaussian Process Classifier 

Within the SUNRISE project an approach was needed that allowed for a reduction in the 

number of tests conducted, while not needing previous knowledge of the scenarios, their 

parameters and the parameter distributions. 
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To achieve this goal, a method for selecting sampling points that focuses on two key aspects 

is proposed: exploitation, which targets parts of the parameter space known to be safety-

critical, and exploration, which investigates regions where the existence of safety-critical 

scenarios is uncertain. Balancing these concepts of exploration and exploitation to minimize 

a function is well-understood within the optimization and machine learning domains. They are 

now adapted for use in scenario concretization and the SUNRISE Sub-Space Creation 

Methodology. 

The input for this approach is a given logical scenario defined by a set of parameters and their 

ranges (scenario parameter space). Each concrete scenario allocated from the logical 

scenario is defined by a specific set of values for the free scenario parameters. Moreover, 

each concrete scenario is associated with a pass or fail outcome which is derived through 

simulation and calculation of given performance metrics, their combination into a scalar 

objective function, and the application of a given threshold γ. The selection of the appropriate 

metrics depends on the testing purpose and the system/function under test (SuT). The reader 

is referred to deliverable D5.3 [44] for an extensive discussion on metrics and their selection. 

The problem statement is described in  

Figure 26, where the parameter space is presented in 2D for visualization purposes and the 

regions of pass and fail are highlighted.  

 
 

Figure 26: Problem statement. 

For this purpose, a Gaussian Process Classifier (GPC) is proposed to serve as a surrogate 

model with a two-fold role: i) to estimate safety evaluation outcomes (pass/fail) of given 

concrete scenarios without the need for execution (in simulation or proving grounds), hence 

allowing for the exhaustive assessment of the parameter space in feasible time and, ii) to 

assist in the sampling of uncertain concrete scenarios towards identification of the space 

boundary(ies), increase of the estimation confidence and parameter space coverage, and 

allocation of scenarios for further testing (e.g. from simulation to proving ground).   

A GPC is a non-parametric machine learning model designed for classification tasks, where 

the goal is to predict discrete outcomes. Unlike traditional models that rely on a fixed set of 

parameters, a GPC defines a probability distribution over functions that could explain the 
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observed data. This flexibility makes it well-suited for capturing complex and nonlinear 

relationships in input data, such as those influencing safety outcomes.  

At the core of the GPC is the assumption of a latent function that links input features to 

classification outcomes. This latent function is not directly observed but is assumed to follow 

a Gaussian Process prior. A kernel function is used to express assumptions about similarity 

between data points, allowing the model to adapt to the structure of the data without requiring 

a predefined functional form.  

Before any observations are made, the Gaussian Process (GP) considers a wide range of 

potential functions that could represent the data. As observations are collected, the model 

updates its belief, assigning higher probability to functions that better explain the observed 

outcomes. The result is a probability distribution over possible latent functions, which becomes 

more confident in regions where data is available.  

The general pipeline for the GP-based surrogate model estimation is depicted in Figure 27, 

where the main components are depicted in orange: 

• Conversion of estimated outcomes to class probabilities 

• Initial sampling for training the GP 

• Targeted sampling for selection of interesting scenarios for further training of the GP 

 

Figure 27: GPC estimation and training pipeline. 

Different approaches may be taken to address the various components of this pipeline. In this 

document, two approaches will be presented as considered by different partners and are 

detailed below. 

Approach 1: 
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To produce class probabilities, such as the probability of a scenario being unsafe, the GPC 

applies a link function, typically the logistic function. This maps the latent function values to 

the interval between 0 and 1, enabling probabilistic predictions that provide both a 

classification decision and a measure of confidence. Since the relationship between the latent 

function and class labels involves a non-Gaussian likelihood, exact inference is not feasible. 

Therefore, approximate inference is used, specifically the Laplace approximation, to estimate 

the posterior distribution over functions. This structure is ideal for binary safety evaluations, 

such as classifying scenarios as safe or unsafe. If the safety evaluation metric were 

continuous, a Gaussian Process Regressor (GPR) could be used instead. In that case, a link 

function would not be required because the output could be used directly.  

The GPC is trained on a set of scenarios with known outcomes, allowing it to learn how input 

parameters influence the safety metric. Once trained, the GPC can be used to estimate the 

safety classification of new, unseen scenarios. This enables the approximation of the pass-

fail boundary without simulating every possible case.  

In the absence of prior knowledge, an initial set of scenarios is generated using LHS. After 

evaluating the initial scenarios and labelling the outcomes, the GPC is trained on this data. 

The resulting surrogate model captures the relationship between scenario parameters and the 

safety classification.  

To further improve the model, Bayesian Optimization is used to select additional samples that 

are likely to provide the most informative results. Bayesian Optimization uses the surrogate 

model, in this case the GPC, to approximate the true safety evaluation function. The 

optimization process then applies an acquisition function to determine which scenarios to 

evaluate next. This function considers both the predicted safety metric and the uncertainty of 

the prediction, balancing exploration of uncertain areas with exploitation of promising ones. 

As a result, the optimization process efficiently identifies the pass-fail boundary.  

The process follows the following structure in practice. It begins with the definition of relevant 

scenario parameters, their corresponding value ranges, and the result parameter, all of which 

are specified in a configuration file. Constraints can also be defined, for example, requiring 

that the target vehicle's speed is greater than that of the ego vehicle. These parameters can 

be derived either from the SUNRISE Data Framework or from expert knowledge. In addition 

to parameter specification, the number of initial samples to be generated is also defined. To 

ensure a near-random yet evenly distributed sampling of the parameter space, LHS is 

employed instead of traditional random generation. Each sample produced through LHS 

represents a unique test case.   

Once generated, these test cases are executed within the SUNRISE simulation framework. 

Each simulation yields an outcome, classified as either a collision or a successful avoidance. 

The results, along with the corresponding input parameters, are then documented and passed 

to the Bayesian optimization module.  

Within this module, a Gaussian Process (GP) classifier is trained on all available simulation 

data, including the most recent results. It learns to predict the outcomes of previously unseen 

scenarios, such as collisions or successful avoidances, while also estimating the confidence 
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associated with each prediction. Based on these predictions, the Bayesian optimization 

identifies regions of the parameter space that are particularly informative, typically those 

characterized by low model confidence. To guide the sampling process effectively, the 

optimizer balances exploration, which involves random sampling across the parameter space, 

and exploitation, which focuses on the most informative regions. For exploitation, Bayesian 

optimization employs an acquisition function that leverages the GP's confidence estimates to 

guide the sampling strategy. New samples are then proposed in selected areas of both 

exploration and exploitation for evaluation in the next iteration. 

In the next iteration, the proposed samples by the Bayesian optimization run through the 

SUNRISE simulation framework. The results are added to the existing simulation dataset, and 

the GP model is retrained accordingly. This cycle repeats iteratively, with each iteration 

improving the model’s accuracy and reducing uncertainty. The optimization process continues 

until the confidence levels across the parameter space show no significant improvement, 

indicating convergence. To evaluate this, a set of equally spaced samples across the 

parameter space is fed into the GP model, which estimates the confidence levels for these 

samples. If the overall improvement in confidence is below a defined threshold, the stopping 

criterion is considered met, and the process terminates. This stopping criterion ensures that 

the iterative approach does not generate and simulate an excessive number of samples that 

contribute little new information, thereby avoiding unnecessary computational and simulation 

effort.  

Approach 2: 

The second approach is demonstrated in Figure 28, where the overall pipeline of the 

estimation based on the GPC surrogate model is shown. On the top we see the ground truth 

process in which a sample scenario is executed, metrics and outcome are calculated, and the 

pass/fail decision is made based on thresholding of the outcome with a given threshold γ. On 

the bottom we see the reciprocation of this process where the GP estimates the probability of 

an outcome as a normal distribution of the estimated mean and variance, and the pass/fail 

outcome is estimated by calculating the probability of the outcome being higher or lower than 

the threshold γ [. The GP kernel is used for the estimation of the mean and variance of the 

conditional posterior distribution 𝑃(𝑓(𝜃)|𝜃, 𝑋, 𝑌)~𝑁(𝜇(𝜃), 𝜎2(𝜃)), where 𝜃 is a new unseen  

sample (concrete scenario parameters), 𝑓(𝜃) is its estimated sample outcome (for the 

metric(s) chosen) , 𝑋 is a set of samples and 𝑌 i 

s their respective ground truth outcomes. To produce class probabilities, the probability of an 

outcome greater (or lower) than a given threshold γ is calculated by the cumulative normal 

distribution function 𝑃(𝑓(𝜃) ≥ 𝛾) = 𝐶𝐷𝐹 (
𝜇(𝜃)−𝛾

𝜎(𝜃)
). 
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Figure 28: Pipeline of GPC concretization process. 

In this approach, the first training phase includes the generation of training dataset through 

random sampling of concrete scenarios from the scenario parameter space and their pass/fail 

outcome is assessed via execution. The model is then batch-trained on the produced training 

set. In the second training phase, a guided sampling algorithm is employed to select concrete 

scenarios close to the pass/fail boundary. Each sampled scenario is subsequently executed, 

assessed as pass or fail, and added to the training dataset. The GP kernel parameters are 

updated every K iterations. The process is repeated until convergence or until a certain 

termination criterion is met (e.g. max number of iterations). For the guided sampling of 

scenarios close to the boundary, the Straddle algorithm is leveraged which employs a 

combined approach of exploration of points with high variance and exploitation of points close 

to the γ boundary. 

Summary 

The optimization process follows a structured loop:  

1. Model the data: Train the GPC using the initial set of labeled scenarios that indicate 

safety or risk.  

2. Quantify uncertainty: Use the GPC to predict outcomes for new scenarios and assess 

the model's confidence in those predictions.  

3. Select new samples: Use an acquisition function, such as expected improvement, to 

select the next scenario to evaluate based on model predictions and uncertainty.  

4. Evaluate and update: Simulate or test the selected scenario, label the result, and 

retrain the GPC. Repeat the process.  

This iterative approach allows the surrogate model to improve continuously, resulting in a 

more accurate estimation of the safety evaluation boundary.  
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Indicative results 

Approach 1: 

 

Figure 29: Estimation of probability of violation.  

 The graphic illustrates an example of this process using Use Case 1.2. In this scenario, the 

safety measure under consideration is a collision avoidance at an urban intersection, while 

the parameters defining the scenario space include the initial speed and distance from the 

intersection. The Bayesian Optimization process is employed to estimate the uncertainty 

associated with potential red-light violations across the parameter space. This enables the 

targeted selection of sample points that are most relevant for further testing of CCAM 

vehicles.  

Approach 2: 

 
Figure 30: Estimation of uncertainty (yellow points) after the first (left) and second (right) training 

phases. 
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The above graphs illustrate the application of the proposed approach to Use Case 1.3 in which 

a pedestrian is darting out, initially occluded behind a static obstacle, while an ego vehicle is 

approaching. The free parameters of this logical scenario are the ego speed, the pedestrian 

speed and the distance between ego and pedestrian when the latter starts crossing. The two 

graphs depict the pass (green) and fail (red) estimations of the GPC of high confidence, while 

the low confidence (uncertain) estimations are depicted in yellow. On the left-hand side, the 

results are after the first training phase, while on the right-hand side, we can see the results 

after the second guided training phase. In both cases, we can see that the uncertain samples 

are those close to the pass-fail boundary. The number of uncertain samples is reduced after 

the second training phase. 
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5 PARAMETER SPACE COVERAGE 

After a set of samples has been created in the parameter space of a logical scenario, it is very 

important to determine how well these scenarios cover the space. If too few samples have 

been chosen, the resulting assessment becomes unreliable, since failure regions might not 

be adequately detected within the space. 

A detailed overview of coverage metrics, including metrics on database coverage, ODD 

coverage, as well as parameter coverage can be found in deliverable D5.3 [44] of the 

SUNRISE project. Coverage in the context of the safety assurance process itself is treated 

within the Coverage block of the SUNRISE SAF. It does however have a large influence on 

concretisation, especially for iterative approaches, as coverage is needed to determine the 

quality of the sampling. In this chapter, the focus lies on addressing parameter coverage in 

this context. 

Coverage of a parameter space does not necessarily have to be uniform. In fact, this approach 

can be quite inefficient. Regions of the parameter space with low variability do not require 

many sample points. In contrast, areas with higher variability, such as those near the pass-fail 

boundary, need denser sampling. This is necessary to accurately estimate the behaviour of 

the evaluation metric across the scenario space. 

5.1 Coverage in Discrete Spaces 

In a discrete parameter space, the coverage definition becomes simple. All possible 

permutations of concrete scenarios are known. This means that a relation between all tested 

and all possible permutations can be easily established. 

There might, however, still be a large number of possible permutations, so that it becomes 

sensible to further reduce them by focusing on parts of the space with higher variability, as 

discussed previously. 

It is important to be able to estimate the coverage achieved to guide knowledge about the 

amount of tests needed. A Method for estimating coverage in discrete spaces by LHS 

approaches was presented by [45].The authors could derive an estimate for the probability of 

coverage. This probability is defined as: 

𝑃(𝑘, 𝑛, 𝑑, 𝑡) =  
𝑈(𝑘, 𝑛, 𝑑, 𝑡)

𝑛𝑑
 

Here, U denotes the number of cells, or parameter combinations, that have been tested with 

k trials of size n across a d-dimensional space, projected to a t-dimensional subspace. They 

could prove that this probability can be estimated by: 

𝑃(𝑘, 𝑛, 𝑑, 𝑡) ≈ 1 − 𝑒−𝑘 𝑛𝑡−1⁄  

This estimation can be used to derive the necessary amount of samples for a LHS approach, 

depending on the coverage percentage that is desired. 
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A common challenge in testing is that the number of parameter combinations grows 

exponentially with the dimensionality of the space. In high-dimensional scenario parameter 

spaces, exhaustive testing becomes infeasible, even when the parameters are discretized. 

When full coverage is not possible, a metric is needed to assess how well the space is 

sampled. One such metric is t-wise coverage [46]. A test space satisfies t-wise coverage if all 

possible combinations of values for any t parameters are included at least once in the test 

matrix. For example, 2-wise coverage ensures that every pair of parameter values appears in 

at least one test case. Higher values of t improve coverage quality but require more test cases. 

This approach is based on the observation that most system faults are caused by interactions 

between only a small number of parameters. 

5.2 Coverage in Continuous Spaces 

Coverage in continuous spaces is quite a bit more complicated as than in discrete spaces. 

Since there is an infinite number of possible scenarios, the direct link between tested and 

possible scenarios is lost. As a first step, distance-based metrics between pairwise samples 

can be used to determine how much of the parameter space is touched by the samples. 

Commonly used pairwise distance metrics include the Euclidean and Mahalanobis distance 

among others. A Voronoi volume analysis can be performed to determine how uniformly a set 

of points covers a space. It does this by partitioning the space into regions around each sample 

point based on proximity. A Voronoi diagram is created to divide the space into cells, one for 

each cell, so that every point in a cell is closer to its corresponding sample than to any other 

sample. Large cells can indicate under sampled areas and low coverage. 

This approach is insufficient, however. Large parts of the parameter space might be 

uninteresting to evaluate, for example because the criticality in this region might be low. In this 

region less evaluations might be desirable then closer to the pass-fail boundary. Therefore, it 

is quite desirable to define a methodology that allows for defining coverage in such a way that 

the regions with higher variability can be prioritized. 

Traditionally in mathematical analysis Lipschitz continuity is used to evaluate the variability, or 

rate of change, of a function. A function is Lipschitz continuous if a real number, the Lipschitz 

constant K, exists that for every pair of points the absolute value of the slope between them 

is not greater than that number.  

𝐾 ≥
|𝑓(𝑥𝑖) − 𝑓(𝑥𝑗)|

‖𝑥𝑖 − 𝑥𝑗‖
 ∀ (𝑥𝑖, 𝑥𝑗) 

One can similarly compute a value K for all nearest neighbour sampling pairs and form a 

distribution over all resulting values. This can serve as a metric to evaluate coverage of the 

space. Higher values show higher variability and indicate insufficient coverage. 

Another way to achieve this is the use of a surrogate model, like those already used in the 

sampling methodology described in section 4.8. 

A surrogate model provides an approximation to the true function based on sampled data. But 

beyond point predictions, many surrogate models (especially probabilistic ones) can also 
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provide estimates of uncertainty, meaning how confident the model is in its predictions at 

various points in the parameter space. These uncertainty estimates can serve as a proxy for 

coverage. Intuitively, if a model is very uncertain about a prediction at a point, it likely means 

the region around is sparsely sampled or exhibits high local variability, suggesting low 

coverage. Conversely, if the model is highly confident (low predictive uncertainty), the region 

is likely well covered. A powerful surrogate modelling approach is the Gaussian Process 

Regression (GPR). Gaussian Processes model a distribution over functions, meaning that 

instead of predicting a single fixed output for a given input, they define a probability distribution 

over all possible functions that could explain the observed data. This probabilistic formulation 

allows Gaussian Processes to express not just a best estimate, but a range of plausible 

outcomes. 

For any new input point, a Gaussian Process provides a mean prediction, which represents 

the expected output value at that point based on the learned function. Simultaneously, it 

provides a standard deviation, which quantifies the model’s uncertainty about that prediction. 

This uncertainty naturally increases in regions of the input space where little or no training 

data is available, and decreases in well-sampled areas, making it a valuable metric for 

identifying where the surrogate model is confident versus where the function is still largely 

unknown. 

Mathematically this can be described as follows: 

The start point is an unknown function 𝑓(𝑥) that maps all parameter combinations to their 

respective test results. This function can be evaluated for a certain parameter combination 𝑥𝑖
∗ 

by conducting a test (e.g. in simulation, on the proving ground). Now 𝑚 different points 𝑋∗ =

[𝑥1
∗, 𝑥2

∗, … , 𝑥𝑚
∗ ] have been evaluated giving 𝑦∗ = [𝑦1

∗, 𝑦2
∗, … , 𝑦𝑚

∗ ] where 𝑦𝑖
∗ = 𝑓(𝑥𝑖

∗). The unknown 

function can be modelled as a Gaussian Process giving: 

𝑓(𝑥)~𝐺𝑃 (𝑢𝑝𝑟(𝑥), 𝑘(𝑥, 𝑥′)) 

With the prior mean function 𝑢𝑝𝑟(𝑥) , which is the best guess before seeing any data and the 

covariance function 𝑘(𝑥, 𝑥′), which measures how related points 𝑥 and 𝑥′ are. This function is 

determined by a kernel. 

Interestingly, one can now estimate the value of 𝑓(𝑥) at a new point without evaluating 

(testing) it. The joint prior distribution of the observed values 𝑦∗ and the new unknown value 

𝑦 is: 

 

With 𝐾(𝐴, 𝐵) being the covariance matrix with entries 𝑘(𝑎, 𝑏) ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. 

The posterior distribution, after seeing all the data, is still a Gaussian: 
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With the posterior mean: 

 

And the posterior variance: 

 

The posterior mean is our resulting surrogate model. More information on the surrogate 

model can be found in section 4.8. 

The posterior variance, however, is the uncertainty of the model at the new datapoint and our 

resulting coverage metric. In Figure 31 this uncertainty is visualised for an example use case, 

the assessment of a traffic light violation. It can be observed that uncertainty is highest at the 

pass-fail boundary in the scenario space. Testing at new points can reduce the uncertainty 

further, until a desired level of certainty over the entire space is reached. 

More information on the mathematics behind the uncertainty quantification of Gaussian 

Processes can be found in [47]. 

 

Figure 31: Representation of uncertainty in the parameter space. 

 

A similar coverage criterion can be established even if uncertainty is not directly measurable. 

To assess this, the rate of change in the objective function can monitored over the different 
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iterations. If the rate of change over multiple iterations is high the coverage is insufficient, as 

additional sample points provide new information to adjust the surrogate model. If the rate of 

change is low, no new information is provided. 

This coverage estimation can be directly integrated into the sampling methodology, for which 

a stopping criterion is necessary to determine when the optimization process should end. This 

is done by first discretizing the parameter space into a grid. The size of this grid depends on 

the dimensionality of the parameter space and should be chosen based on available 

computational resources and coverage needs. Within each grid cell, a representative point is 

selected. This point can be chosen based on its position within the cell, as the average or 

mean of the evaluation metric over the cell, or using the approach described in section 4.8. 

At each iteration, it is evaluated how the surrogate model’s prediction at these representative 

points changes. If the change in predictions falls below a predefined threshold, the model is 

considered to have converged. This indicates that the optimization process has sufficiently 

explored the parameter space and that the surrogate model has stabilized. As a result, the 

optimization can be stopped without the need to evaluate every possible scenario.  
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6 SAFETY EVALUATION METRICS 

As CCAM technologies continue to evolve, ensuring the safety of such systems has become 

a critical priority. The deployment of CCAM solutions in real-world environments brings with it 

complex interactions among vehicles, infrastructure, pedestrians, and other road users. To 

manage these complexities effectively, safety metrics serve as a fundamental tool in 

assessing, monitoring, and improving the safety performance of automated systems. 

This chapter presents a structured approach to identifying and applying safety metrics for the 

assessment of CCAM systems. These safety evaluation metrics serve as the foundation for 

the selection and sampling methodologies discussed in this deliverable. They are used to 

assess the performance of the CCAM system at various sample points, each representing a 

unique combination of parameters within the scenario space. The evaluation results derived 

from these metrics inform and guide the sampling strategy, helping to identify the parameter 

combinations necessary for a comprehensive and meaningful assessment of the CCAM 

system. 

Safety evaluation metrics are an integral part of the Test Evaluate block within the SUNRISE 

SAF. However, they also play a crucial role during the concretization process. Many of the 

methods described in this deliverable use iterative test evaluations to guide sampling, refining 

the selection of test points to improve overall coverage and representativeness. To support 

this process, it is essential to understand which types of metrics can be applied in a safety 

assessment and how to define suitable reference criteria. These criteria provide the 

benchmark against which test results are compared, enabling a clear pass/fail decision for the 

CCAM system in a given test scenario. 

6.1 Categories of Safety Metrics 

Safety in CCAM systems must be assessed from multiple dimensions to ensure holistic and 

reliable performance. To achieve this, different types of safety metrics have to be considered 

in the safety assurance process, each capturing a different aspect of system behaviour, risk, 

and compliance. Note that not all metrics are applicable to all use cases, and the steps in the 

SAF may be applied multiple times for different metrics. 

Some categories that might be considered in the safety assurance process are: 

• Criticality Metrics, which evaluate the severity and urgency of situations. 

• Legal Compliance Metrics, which ensure adherence to traffic rules and regulations. 

• Comfort metrics, which reflect how humans may perceive the system’s safety 

performance. 

• Aggregated metrics, which relate to the safety performance of the system over its 

entire ODD. 
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Together, these metrics form the foundation for assessing and validating the safety of CCAM 

solutions across design, testing, and deployment stages. An overview of a variety of metrics 

from different categories can be found in [48]. 

6.1.1 Criticality Metrics 

Criticality metrics quantify how close a traffic situation is to becoming a potentially hazardous 

or unsafe event condition. These metrics are essential for evaluating the behaviour of 

automated driving systems under both normal and edge-case conditions. By identifying 

situations where the vehicle approaches safety thresholds, criticality metrics enable the 

detection of safety-relevant scenarios, support benchmarking against baseline performance, 

and help validate the effectiveness of risk mitigation strategies. 

Unlike binary safety outcomes (e.g., crash or no crash), criticality metrics provide a more 

nuanced, and continuous assessment of risk. They allow stakeholders to understand not only 

whether the system avoided an incident, but also how safely it did so, and how much margin 

was available before intervention would have been required. 

Criticality can be assessed using a variety of physical, temporal, and statistical indicators. 

These include spatial proximity to other road users, time-based measures of collision risk, and 

the likelihood of a situation escalating into an unsafe event. The examples in the following 

table illustrate some of the most commonly used criticality metrics. 

A more complete overview of criticality metrics can be found in [49]. 

Table 3: Examples for Criticality Metrics. 

Metric Description Example Use Case 

Time-to-Collision (TTC) Time remaining before a 
collision occurs if current 
speeds are maintained 

Longitudinal risk 
assessment. 

Time Headway (THW) Time difference between 
vehicles in the same lane 

Following distance 
evaluation. 

Time-to-React (TTR) Time available for the 
system to initiate a 
reaction 

Emergency manoeuvre 
evaluation. 

Post Encroachment Time 
(PET) 

Describes the time gap 
between two vehicles at a 
point or area. 

Evaluate criticality at 
intersections. 

 

6.1.2 Legal Compliance Metrics 

Legal compliance is essential for the safe and lawful operation of CCAM systems. As these 

vehicles are integrated into public road networks, they must consistently adhere to a broad 

spectrum of traffic regulations that govern human driving behaviour. Legal compliance metrics 
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serve as a framework for evaluating whether automated systems conform to the rules of the 

road under a wide range of driving conditions and operational contexts. They should be 

derived from the respective road traffic regulation governing the ODD of the CCAM vehicle. 

Fundamental metrics of legal compliance, depending on the ODD, can include obeying posted 

speed limits, adjusting speeds appropriately in variable speed zones, and adhering to specific 

limits in school zones, construction areas, or under adverse weather conditions. Compliance 

with right-of-way rules is equally important and entails yielding at intersections, giving 

precedence to pedestrians at crosswalks, and correctly navigating roundabouts and 

uncontrolled junctions correctly. Automated vehicles must also demonstrate reliable lane 

discipline, maintaining appropriate lateral positioning within marked lanes, executing legal lane 

changes with proper signalling and clearance, and avoiding illegal or unsafe driving 

manoeuvres such as lane straddling or shoulder usage. 

Beyond these core behaviours, legal compliance extends to the interpretation and response 

to dynamic and static signage such as traffic lights, stop signs, yield signs, and temporary 

signals introduced by construction zones or law enforcement personnel. Vehicles must 

accurately detect and interpret these signs and signals and act upon them in a manner that is 

not only technically correct but legally compliant. In complex or congested environments, 

timely and proportional responses to signage and signals are critical to ensuring both safety 

and legality. 

Additionally, these metrics should capture not only the frequency of compliance but also the 

quality and timeliness of actions taken in response to legal requirements. For instance, 

stopping at a red light must occur within the legal stopping zone and with sufficient lead time, 

while right-of-way decisions must reflect a correct understanding of local traffic laws. 

Another critical area involves edge-case scenarios, situations where conventional traffic rules 

may not be clearly applicable or where infrastructure elements are missing or malfunctioning. 

Examples include unmarked roads where lane boundaries are undefined, intersections with 

non-functional traffic lights due to outages, or temporary construction zones that introduce 

unexpected patterns of movement. In such cases, the vehicle must demonstrate the ability to 

apply general legal principles and adopt conservative, safety-oriented behaviour while 

maintaining lawful operation. Assessing performance in these scenarios involves examining 

how well the system infers appropriate legal conduct and whether it remains within acceptable 

legal bounds despite the absence of explicit guidance. 

Another emerging concern lies in inter-vehicle legal coordination, which becomes particularly 

relevant in scenarios involving merging, lane changes, or platooning. These manoeuvres 

require not only an understanding of static traffic rules but also dynamic interaction with 

surrounding vehicles, potentially through vehicle-to-vehicle (V2V) communication. Automated 

vehicles must evaluate right-of-way, maintain safe and legal following distances, and make 

coordinated decisions without violating traffic laws. Legal compliance in this context involves 

both individual behaviour and the ability to harmonize actions with others in a lawful manner. 

It is important to assess how successfully automated systems manage these shared 

responsibilities and whether any legal ambiguities arise from cooperative behaviour. 
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Lastly, operating in mixed traffic environments presents additional complexity, particularly 

when automated vehicles must interact with non-compliant or unpredictable road users. 

Pedestrians may jaywalk, cyclists might disregard signage, and human drivers can behave 

erratically or unlawfully. In such situations, the automated vehicle must maintain its own legal 

compliance while also adapting to ensure safety. The challenge lies in resolving these conflicts 

without committing legal infractions, such as avoiding an illegally crossing pedestrian without 

swerving into oncoming traffic or violating lane boundaries.  

An example of evaluating legal compliance metrics in the context of the SUNRISE SAF, can 

be found in Use Case 1.2 of the SUNRISE project, detailed in deliverable D7.2 [4]. This Use 

Case deals with traffic light compliance.  

6.1.3 Comfort Metrics 

While comfort metrics are not directly tied to the primary safety performance of CCAM 

systems, they play a critical role in user acceptance and can indirectly influence overall safety 

outcomes. These metrics focus on evaluating how smoothly and predictably the automated 

driving system operates under typical driving conditions, especially from the perspective of the 

vehicle’s occupants. 

Key indicators include lateral and longitudinal acceleration, as well as jerk, the rate of change 

of acceleration and the interaction with other vehicles characterized by headways and relative 

velocities [48]. Although these parameters may remain within the vehicle’s defined safety 

envelope and not pose a direct threat to physical safety, sudden or excessive changes in 

speed or direction can be perceived by passengers as uncomfortable, disorienting, unsafe or 

even alarming. For instance, abrupt braking, harsh cornering, or frequent small corrections in 

steering may degrade ride comfort even if they do not violate any traffic laws or mechanical 

limits. 

Importantly, discomfort can have secondary safety implications. Low comfort levels may 

reduce user trust and acceptance of the automated driving function, potentially leading to 

disengagement or manual takeover in situations where the vehicle is actually operating safely. 

Such takeovers, especially if they are unplanned or reactionary, can introduce additional risks, 

as human drivers may not be fully aware of the system’s status or the surrounding environment 

when resuming control. Therefore, maintaining a high standard of ride comfort contributes not 

only to user satisfaction but also to stable, uninterrupted system operation. 

To comprehensively assess comfort, metrics should be collected across a variety of driving 

scenarios, including acceleration from a stop, deceleration during traffic flow changes, turning 

manoeuvres, and lane changes. These assessments help ensure that vehicle behaviour 

remains not only lawful and efficient but also intuitive and pleasant for passengers, reducing 

the likelihood of system disengagement and contributing to broader public acceptance of 

CCAM technologies. 

The following table shows some comfort metrics identified by [50]. These metrics are vehicle 
dependent, meaning independent of human factors.  
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Table 4: Examples for vehicle related comfort metrics [50]. 

Metric Description 

Unclear Actions Actions taken by the automated system that are 
unclear, unexpected, or unpredictable. 

Driving Speed Speed of the automated system. 

Driving Headway Headway of the automated system 

Driving Action Execution How the system undertakes certain driving actions, 
such as stopping, passing, turning, and accelerating. 

Energy consumption Energy (e.g. fuel) consumed by the automated system- 

 

6.1.4 Aggregated Metrics 

While the previous metrics are tailored to individual driving scenarios, it is equally important 

to assess the overall performance of a CCAM system across its entire ODD. This scenario-

based approach aligns with the methodology used in the SAF, which emphasizes the 

evaluation of specific, well-defined situations. However, to gain a comprehensive 

understanding of system-level safety and reliability, certain metrics must be aggregated 

across a wide range of scenarios within the ODD. 

Aggregated metrics can help to demonstrate the positive risk balance of the automated driving 

system. They provide evidence that, over time and across varied operational contexts, the 

system performs consistently, maintains safety, and delivers reduced risk compared to a 

human-driven baseline. These metrics are not limited to a single event or situation but instead 

reflect cumulative behaviour, making them essential for homologation and system validation. 

The following table presents a set of example aggregated metrics that could be considered 

when evaluating CCAM systems across their full operational scope. 
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Table 5: Examples for aggregated metrics. 

Metric Description Example Use Case 

Crash Rate per 100km Measures the number of 
crashes per 100 
kilometres driven by the 
CCAM system. 

Used to evaluate the 
overall safety 
performance of the 
system over time and 
benchmark against 
human drivers. 

Emergency Manoeuvres 
per 1000km 

Tracks the frequency of 
abrupt braking, swerving, 
or evasive actions 
triggered by the system to 
avoid a collision. 

Helps identify how often 
the system approaches 
the limits of safe 
operation, even if crashes 
are avoided. 

Take-over requests per 
1000km 

Counts the number of 
times the system requests 
a human driver to take 
control. 

Assesses how often the 
system encounters 
situations outside its 
competence or ODD, 
requiring manual 
intervention. 

Impact on Traffic Flow 
Efficiency 

Measures the system’s 
ability to maintain smooth 
and efficient integration 
into traffic (e.g., average 
speed, headway 
consistency, congestion 
contribution). 

Used in urban or highway 
scenarios to assess 
whether the CCAM 
system contributes to or 
alleviates congestion. 

 

6.2 Determining Safe Behaviour 

Metrics can be used to assess the relative safety performance of a CCAM system. However, 

they do not in themselves define what constitutes safe behaviour. To make this determination, 

a reference is required. 

A reference serves as a benchmark for interpreting safety metrics and can also be used to 

establish pass–fail criteria for specific scenarios. The choice of reference is crucial, as it sets 

the standard by which system safety is judged. For example, the reference might be: 

• A collision-free requirement, where the system must avoid any collision that is 

physically avoidable. 

• The behaviour of a competent and careful human driver. 

In simulation environments, such references can be represented through driver models, 

computational constructs designed to simulate how a driver would act under specific 
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conditions. These models are run on the same scenarios as the CCAM system, enabling direct 

performance comparison. 

Driver models, in a broader sense, are mathematical or algorithmic systems that replicate how 

human drivers perceive their surroundings, make decisions, and control their vehicles. They 

range from simple rule-based models, which apply fixed responses to specific inputs, to 

advanced, data-driven models capable of closely mimicking human driving behaviour across 

diverse traffic situations by leveraging large amounts of data. 

6.2.1 Idealized benchmark 

Collision-free car following models are mathematical frameworks designed to ensure that a 

simulated or real vehicle can move through traffic without causing a crash, given reasonable 

assumptions about the behaviour of surrounding vehicles. They originated in traffic flow 

theory, where the goal was to realistically model vehicle interactions while guaranteeing safety 

constraints. 

One of the earliest and most influential examples is the Gipps model [51]. Gipps introduced a 

car-following approach where each driver adjusts speed based on the vehicle ahead, 

maintaining a safe stopping distance under worst-case braking assumptions. The model 

incorporates limits on acceleration, desired speed, and reaction time, ensuring that a vehicle 

will never collide with the one in front if both follow the same rules. 

The Intelligent Driver Model (IDM) [52] is another car following model. IDM calculates 

acceleration as a balance between a driver’s desire to reach a target speed and the need to 

keep a safe distance from the vehicle ahead. The “safe distance” is dynamic, depending on 

current speed, relative speed, and a minimum time gap, which makes the model adaptable to 

different traffic densities. Unlike the discrete safety margins in Gipps, IDM produces gradual 

accelerations and decelerations, making it more realistic. 

However, these models result in behaviour that is not reflective of the capabilities of a human 

driver. This is especially true for challenging driving scenarios. Additionally, these models are 

only applicable for a limited number of scenarios involving car-following situations. 

To address these limitations, frameworks extend the collision-free principle into more general 

reference models for CCAM systems. One prominent example is the Responsibility-Sensitive 

Safety (RSS) model [53]. RSS is a formal mathematical interpretation of the legal concept of 

Duty of Care, defining a set of rules that, if followed by all road users, would theoretically 

prevent accidents. These rules include: 

1. Do not hit someone from behind. 

2. Do not cut in recklessly. 

3. Right-of-way is given, not taken. 

4. Be cautious in areas with limited visibility. 

5. If you can avoid an accident without causing another, you must do so. 
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RSS formalizes key notions such as safe distance, dangerous situations, and proper response 

for both longitudinal and lateral control. For example, in the simplest case of a single-lane 

road, the model defines the minimal safe longitudinal distance between two vehicles based 

on their speeds, braking and acceleration limits, and the following vehicle’s reaction time. If 

the following car detects that the current distance is unsafe, it must react within a prescribed 

response time and then brake with at least a minimum deceleration until the danger is 

resolved. 

Longitudinal safety is treated in two main cases: 

• Same-direction travel – the following car must maintain enough distance to stop safely 

even if the lead car brakes hard after a reaction delay. 

• Opposite-direction travel, both vehicles must brake, but the one going against the 

lane’s intended direction is expected to brake harder. 

Lateral safety is similarly defined: two vehicles must maintain enough side clearance to stop 

lateral motion toward each other before contact. RSS uses a robust µ-lateral velocity measure 

to account for small lateral oscillations that are not intentional manoeuvres. 

A situation becomes dangerous only if it is unsafe both longitudinally and laterally. The danger 

threshold time marks when this condition first holds. RSS’s proper response rules then 

constrain accelerations: 

• If danger arises longitudinally, apply longitudinal braking rules. 

• If danger arises laterally, apply lateral braking rules. 

By design, these definitions are pairwise compatible: the ego vehicle can compute its safe 

acceleration limits for each other vehicle independently and then take the most restrictive limit, 

avoiding contradictory requirements. 

This inductive safety principle allows RSS to guarantee that a properly responding vehicle will 

not cause a collision from behind, provided the other vehicle’s braking does not exceed the 

assumed maximum. The model’s parameters, reaction time, acceleration limits, and braking 

capabilities, can be tuned for different vehicle types or road conditions, enabling a trade-off 

between soundness (safety in more extreme situations) and usefulness (avoiding overly 

defensive driving that disrupts traffic flow). 

 Another similar model is the Safety Force Field (SFF) model developed by [54]. The is a 

general theory of safety for autonomous driving, designed to operate at the obstacle 

avoidance level. Its goal is to map the vehicle’s perception of the world into a set of control 

constraints, limits on acceleration, braking, and steering, that, if obeyed, guarantee collision 

avoidance under the assumptions of the model. 
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The core idea is to treat every road user or obstacle as generating a “safety force field” around 

it, based on its current motion and the assumed safety procedure it can perform. For dynamic 

actors, the safety procedure typically means reducing lateral movement and braking to a stop 

as quickly as is reasonably possible; for static obstacles, it simply means remaining still. By 

predicting the trajectories that would result if each actor began its safety procedure 

immediately, SFF identifies space-time intersections between these trajectories. 

The SFF approach is built on multiple key principles. First, it provides a collision prevention 

guarantee. That means, if all actors initiate their safety procedures before their predicted 

trajectories intersect, collisions cannot occur. Second, it supports better-than-baseline 

behaviour, allowing an actor to choose an alternative action, such as swerving instead of 

braking, that avoids a collision more effectively than the default safety procedure, provided it 

does not create new hazards for others. Third, it ensures clear responsibility, meaning that if 

an actor violates the safety force field and causes a potential intersection, this breach can be 

detected unambiguously. 

In practice, SFF can be used to evaluate whether the vehicle’s planned actions respect all 

active safety force fields and identify unsafe actions. SFF simplifies validation and allows for 

consistent safety guarantees across different driving contexts. 

6.2.2 Human driver reference models 

The UNECE R157 regulation defines a performance model for Automated Lane Keeping 

Systems (ALKS) that uses the capabilities of a skilled and attentive human driver as a 

benchmark for determining whether traffic-critical situations are preventable or unpreventable 

[55]. The boundary between the two is based on simulation results using this human driver 

model, with the expectation that certain scenarios deemed unpreventable for humans may still 

be handled successfully by ALKS. 

In low-speed scenarios, the model assumes that the human driver avoids collisions only 

through braking. The process is divided into three phases: Perception, where the driver 

detects a potential hazard; Decision, where the risk is evaluated and an action chosen; and 

Reaction, where braking is initiated and ramped up to full deceleration. Measured data informs 

the key timing parameters: 

1. Risk perception time: 0.4 seconds. 

2. Decision to braking initiation: 0.75 seconds. 

3. Time to reach full deceleration: ~0.6 seconds to 0.774–0.85 g, depending on the 

scenario. 

The model is applied to three primary ALKS scenarios: 

• Cut-in – The system detects a vehicle moving into the ego vehicle’s lane when it 

crosses a lateral wander threshold of 0.375 m from the lane centre. The risk perception 

time starts at this moment, and the maximum lateral movement speed (from real-world 
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data) determines the detection distance. A Time to Collision (TTC) of 2.0 seconds or 

less signals a high risk of collision. 

• Cut-out – Detection also begins when the lead vehicle crosses the 0.375 m wander 

threshold while moving out of the lane. Here, the risk is defined by a Time Headway 

(THW) of 2.0 seconds or less, after which the ego vehicle must respond. 

• Deceleration – Risk perception starts when the lead vehicle’s deceleration exceeds 5 

m/s². 

To test these scenarios, the regulation specifies a set of environmental, roadway, and vehicle 

parameters: lane width, number of lanes, road grade, friction conditions, lighting, weather, 

vehicle speeds, initial distances, vehicle sizes, and dynamic motion data such as lateral 

velocity, maximum deceleration, and jerk rate. These parameters are varied in simulation to 

determine the exact combinations under which ALKS must avoid a collision at or below its 

maximum permitted operating speed. 

In essence, the UNECE R157 performance model formalizes a human-equivalent baseline in 

perception, decision, and reaction capability, then applies it to realistic lane-keeping scenarios. 

ALKS is required to match or surpass this baseline in all preventable cases, ensuring that its 

performance meets or exceeds that of a skilled human driver. 

Another similar model is the Fuzzy Safety Model [54]. The fuzzy safety model introduces two 

Fuzzy Surrogate Safety Metrics (SSMs) designed for real-time assessment of rear-end 

collision risk in both Advanced Driver Assistance Systems (ADAS) and automated vehicle 

functions. These are the Proactive Fuzzy Surrogate Safety Metric (PFS) and the Critical Fuzzy 

Surrogate Safety Metric (CFS). Their purpose is to overcome limitations of traditional safety 

metrics by using fuzzy logic to evaluate safety levels without relying on rigid, arbitrary 

thresholds. 

Traditional SSM's, such as TTC, have been widely used for decades to estimate the likelihood 

of crashes based on vehicle trajectories. While useful, these metrics have notable limitations. 

They often overlook the influence of driver or system reaction time, which can be critical in 

real-world scenarios. Their binary classification of situations as either “safe” or “unsafe” relies 

on rigid thresholds that may not reflect the gradual nature of risk. Moreover, traditional SSMs 

focus on the proximity to a potential crash without capturing its possible severity, and the 

threshold values for metrics like TTC vary significantly across studies, making their application 

inconsistent. 

Fuzzy logic addresses these problems by allowing gradual safety classifications, from very 

safe to very dangerous, rather than binary categories. This enables more nuanced, adaptive 

risk assessment, which is especially valuable for automated systems that must operate safely 

without being overly conservative. 
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The two metrics proposed are: 

• PFS: Evaluates safety conditions before they become critical, allowing early 

interventions. It was compared against the safe distance definition of the 

Responsibility-Sensitive Safety (RSS) model and found to produce meaningful safety 

evaluations without fixed thresholds. 

• CFS: Assesses risk when a situation has already become safety critical, outperforming 

TTC in predicting cases where vehicles failed to avoid a collision with a static obstacle. 

The metrics were tested at the AstaZero proving ground in Sweden through two experiments: 

• Car-following tests with five vehicles driven by Adaptive Cruise Control (ACC) to 

assess proactive metrics. 

• Emergency braking tests against a static target to assess critical metrics, including 

measurements of maximum achievable deceleration. 

Comparisons showed that CFS correlated strongly with collision severity (vehicle speed at 

impact) and outperformed TTC in early detection of unavoidable collisions. PFS provided a 

more flexible safety envelope than RSS, avoiding over-conservatism while still identifying 

unsafe conditions. 

By integrating fuzzy logic into SSMs, this approach provides a robust and adaptable safety 

evaluation tool for both human-assisted and fully automated driving, better reflecting real-

world variability and uncertainty. 

A fundamental challenge in driving lies in tactical decision making, in contrast to the reaction 

to critical events the previous models captured, balancing the need to make progress toward 

one’s destination with the need to avoid accidents, violations, and other negative 

consequences. While the primary purpose of driving is typically to arrive efficiently, this must 

be done under uncertainty, uncertainty about the behaviour of other vehicles, the sudden 

appearance of pedestrians, or changes in road conditions. Drivers who are overly cautious 

risk impeding traffic and behaving in ways that confuse other road users, whereas those who 

are overly assertive increase the likelihood of collisions. Human drivers generally excel at 

managing this trade-off, even in complex and unpredictable situations, which has made 

understanding their decision-making processes a key objective for researchers in traffic 

psychology, human factors, and autonomous vehicle development. 

To address this problem, the active inference approach offers a promising framework that 

integrates goal-directed action and uncertainty management within a single computational 

process [56]. Originating in computational neuroscience, active inference models behaviour 

as the continual minimization of expected free energy (EFE). This measure combines two 

complementary components: pragmatic value, which drives the agent toward preferred 

outcomes (such as moving closer to the destination or avoiding hazards), and epistemic value, 

which quantifies the benefit of actions that reduce uncertainty about the environment (for 

example, checking the rearview mirror before overtaking). By representing both motives in a 
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common in a single problem statement, active inference allows for an optimal balance 

between exploitation (progress) and exploration (information-seeking) to emerge naturally 

from the same decision-making process. 

In practical terms, a driver modelled with active inference evaluates possible future action 

sequences, over a planning horizon and selects the one with the lowest expected free energy. 

This ensures that actions are chosen not only for their immediate utility in achieving goals but 

also for their potential to clarify uncertain aspects of the driving situation. For example, 

accelerating toward an occluding truck may have both pragmatic value (shortening travel time) 

and epistemic value (gaining a better view of the road ahead). Because the same 

mathematical formulation governs both types of value, the model inherently captures the way 

humans resolve uncertainty while pursuing their objectives. 

Finally, cognitive models try to replicate the cognitive processes of the human drivers. These 

models generally give a broader applicability over more scenarios. A good example would be 

the SCM model [57]. The SCM is a cognitive driver model designed for motorway scenarios. 

It comprises six interconnected modules, Information Acquisition, Mental Model, Situation 

Manager, Action Manager, Action Implementation, and Driver Characteristics, that together 

simulate perception, cognition, decision-making, and action. 

The Information Acquisition module models gaze allocation and fixation as stochastic 

processes, incorporating foveal and peripheral vision, the useful field of view, and tau theory 

for perceiving measures such as time headway and time to collision. Data from simulator and 

field studies inform these parameters. Perception is influenced by bottom-up (stimulus-driven) 

and top-down (task-driven) processes. 

Perceived information is stored in the Mental Model, which holds microscopic (nearby 

vehicles), mesoscopic (aggregate traffic), and infrastructure data. This representation may be 

incomplete or error-prone but also supports calculations, such as assessing gap size for 

merging. 

The Situation Manager classifies traffic scenarios based on extracted features (e.g., a turn 

signal indicating a lane change) and assigns situation intensities. The Action Manager then 

selects an appropriate response, braking, accelerating, or steering, while the Action 

Implementation module translates it into control inputs. 

Driver Characteristics introduces behavioural diversity by assigning each simulated driver 

parameters for perception, rule compliance, and driving style, sampled from empirical 

distributions. This ensures realistic variability, so in the same situation, such as a cut-in, 

different drivers may respond with braking or lane changing. 

A more complete overview of different models that might be used in the safety assurance 

process can be found in [58] and [59]. 

6.2.3 Using reference models in safety assurance 

Previously, we described how the SUNRISE SAF can be used to evaluate the performance of 

a CCAM system in simulated, hybrid, or proving-ground tests. This process involves querying 
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scenarios via the SUNRISE Data Framework, applying the concretization methods detailed in 

this deliverable, assigning the resulting concrete scenarios to test instances, and executing 

them. 

The performance of a reference model can be assessed in much the same way as the CCAM 

system within a simulation environment. The most direct approach is to re-simulate every 

concrete scenario derived for the CCAM system using the reference model and then verify for 

each scenario that the CCAM system meets or exceeds the reference model’s safety 

performance. 

If evaluating the reference model for every concrete scenario is computationally prohibitive, a 

surrogate model can be employed to estimate the reference model’s performance across the 

entire logical parameter space. The aim is to identify safe and unsafe regions, e.g. where the 

reference model does or does not result in a crash. These regions can then serve as pass–

fail criteria: the CCAM system should not exhibit unsafe behaviour (such as crashes) in regions 

deemed safe by the reference model. 

Beyond performance assessment, a computational model can also be used to optimize the 

scenario sampling process. By predicting outcomes across the parameter space, it can 

highlight regions that are: 

• Not challenging for the system, and thus unlikely to reveal weaknesses. 

• Already failed by the reference model, making further testing unnecessary. 

Focusing test resources on the remaining, most informative regions can significantly reduce 

the number of required tests, an especially valuable benefit when testing capacity is limited, 

while still maintaining good coverage of critical and safety-relevant scenarios.  
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7 CONCLUSIONS 

This deliverable presents a comprehensive set of approaches for the concretization of 

logical scenarios obtained through queries to the SUNRISE Data Framework. These 

approaches enable the generation of concrete scenarios that can be used for testing within 

the SUNRISE SAF. By detailing the concretization process in the Query & Concretize block, 

the deliverable contributes a vital element to the overall SUNRISE methodology. 

To support the concretization of logical scenarios, a categorization of sampling and 

selection methods has been introduced. Approaches from literature have been identified and 

discussed in Chapter 3. Different approaches are designed to accommodate a range of user 

needs and varying levels of available information about scenario parameters. The resulting 

Concretization Categorisation Framework organizes and categorizes different 

concretization strategies and defines the relationships between them, providing a structured 

way to select and apply suitable methods based on specific testing requirements. 

Further developments of existing approaches, as well as the introduction of new approaches 

have been detailed in Chapter 4. The focus of these developments has been the introduction 

of methods to allow for Parameter Subspace Creation, meaning that the testing efforts can 

be focused on certain relevant parts of the logical scenario parameter space. 

To achieve this a key focus of this deliverable is the development of iterative sampling 

methods based on surrogate models. These methods support efficient identification of 

critical scenarios, particularly those near pass-fail boundaries. The surrogate model, which 

serves as an approximation of the evaluation metric across the scenario parameter space, is 

continuously improved using data from previous iterations. This results in an increasingly 

targeted and effective sampling process. 

The concrete scenarios produced through these methods can be executed using other blocks 

of the SUNRISE SAF within its Environment component, including tools and processes 

defined in related deliverables. These include the test allocation method from Deliverable 

D3.3 and the execution procedures within the Harmonized V&V Simulation Framework 

developed within WP4. In addition, the methods described here provide valuable guidance for 

users of the SUNRISE SAF, helping them select appropriate concretization strategies based 

on the specific characteristics of the scenarios obtained from the SUNRISE Data Framework. 

They are especially relevant to demonstrate the use cases of demonstrated within WP7. 

Additionally, this deliverable touches on important parts of the SUNRISE methodology that 

are relevant for the concretization of scenarios, including parameter space coverage in 

Chapter 5, which is also treated in WP5 of the project, and safety evaluation metrics for test 

evaluation in Chapter 6.   

In conclusion, this deliverable provides information to support the successful concretization of 

logical scenarios for testing within the SUNRISE SAF. By enabling the identification of 

parameter subspaces where more or less testing is required, it contributes to a more efficient 

and focused concretization, showing that selected test cases within these parameter 

subspaces are sufficient instead of testing the entire parameter spectrum.  
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