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EXECUTIVE SUMMARY 

Safety assurance of Cooperative, Connected, and Automated Mobility (CCAM) systems is a 

crucial factor for their successful adoption in society, yet it remains a significant challenge. It 

is generally acknowledged that for higher levels of automation, the validation of these systems 

by conventional test methods would be infeasible. Furthermore, certification initiatives 

worldwide struggle to define a harmonized safety assurance approach enabling massive 

deployment of CCAM systems. 

The SUNRISE project develops and demonstrates a CCAM Safety Assurance Framework 

(SAF). The overall objective of the SUNRISE project is to accelerate the large-scale and safe 

deployment of CCAM systems. In alignment with international twin projects and initiatives, the 

project aims to achieve this objective by providing a SAF consisting of three main components: 

a Method, a Toolchain and a Data Framework. The Method is established to support the SAF 

safety argumentation, and includes procedures for scenario selection, sub-space creation, 

dynamic allocation to test instances and a variety of metrics and rating procedures. The 

Toolchain contains a set of tools for safety assessment of CCAM systems, including 

approaches for virtual, hybrid and physical testing. The Data Framework provides online 

access, connection and harmonization of external Scenario Databases (SCDBs), allowing its 

users to perform query-based extraction of safety relevant scenarios, allocation of selected 

scenarios to a variety of test environments, and reception of the test results.  

This deliverable, D5.3 "Quality metrics for scenario database content", represents a 

contribution to Work Package 5 of the SUNRISE project. It addresses methods to evaluate 

the quality of SCDBs, which play a central role in the validation of Connected, Cooperative, 

and Automated Mobility (CCAM) systems. By providing a structured set of quality metrics, this 

deliverable directly supports the overarching project goal of establishing a SAF that is 

harmonized, scalable, and transparent. 

The document provides contributions to five key types of quality metrics, each targeting a 

different aspect of scenario database assessment: 

• Testing Purpose Metrics: Evaluate how well a scenario or scenario set aligns with its 

intended use, such as validating specific system functions or addressing particular safety 

concerns. 

• Scenario Description Metrics: Assess the completeness, clarity, and consistency of 

scenario definitions, including parameter validity and documentation quality. 

• Scenario Exposure Metrics: Quantify how frequently a scenario – or a type of scenario 

– occurs in the real world, often based on statistical traffic data. 

• Dissimilarity Metrics: Measure the diversity among scenarios by evaluating how 

different they are from one another, helping to avoid redundancy. 

• Scenario Coverage Metrics: Evaluate how comprehensively the scenario set spans 

relevant parameter spaces, operational design domains, or system functions. 

These metrics are based on both an in-depth literature review and novel developments within 

the SUNRISE project. They allow stakeholders to assess individual scenarios as well as entire 
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scenario sets in terms of completeness, relevance, diversity, and representativeness. The 

deliverable also demonstrates the feasibility of applying these metrics through illustrative 

examples using real-world scenarios, validating their practical utility. 

This work is relevant to SAF users and SAF auditors, such as SCDB developers, testers, and 

policymakers, as it offers implementable guidelines for assessing and improving scenario 

quality in a consistent manner. The introduction of a risk-based scenario relevance metric, 

along with metrics for coverage and diversity, contributes to the advancement in scenario-

based testing. These outcomes are intended to be integrated into SCDB interfaces, enabling 

more effective scenario selection, database optimization, and test planning. 

The work lays the foundation for upcoming tasks, including the integration of these metrics 

into the SAF for streamlined scenario generation and evaluation. Overall, this deliverable 

provides actionable insights that will support harmonization and innovation in CCAM safety 

assurance across Europe and worldwide.  
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1 INTRODUCTION 

1.1 SUNRISE project  

Safety assurance of Connected, Cooperative, and Automated Mobility (CCAM) systems is a 

crucial factor for their successful adoption in society, yet it remains a significant challenge. 

CCAM systems need to demonstrate reliability in all driving scenarios, requiring robust safety 

argumentation. It is acknowledged that for higher levels of automation, the validation of these 

systems by means of real test-drives would be infeasible. In consequence, a carefully 

designed mixture of physical and virtual testing has emerged as a promising approach, with 

the virtual part bearing more significant weight for cost efficiency reasons.  

Worldwide, several initiatives have started to develop test and assessment methods for 

Automated Driving (AD) functions. These initiatives already transitioned from conventional 

validation to a scenario-based approach and combine different test instances (physical and 

virtual testing) to avoid the million-mile issue. 

The initiatives mentioned above, provide new approaches to CCAM validation, and many 

expert groups formed by different stakeholders, are already working on CCAM systems’ 

testing and quality assurance. Nevertheless, the lack of a common European validation 

framework and homogeneity regarding validation procedures to ensure safety of these 

complex systems, hampers the safe and large-scale deployment of CCAM solutions. In this 

landscape, the role of standards is paramount in establishing common ground and providing 

technical guidance. However, standardising the entire pipeline of CCAM validation and 

assurance is in its infancy, as many of the standards are under development or have been 

very recently published and still need time to be synchronised and established as common 

practice. 

Scenario Databases (SCDBs) are another issue tackled by several initiatives and projects, 

that generally tends to silo solutions. A clear concrete approach should be used (at least at 

European level), dealing with scenarios of any possible variations, including the creation, 

editing, parameterisation, storing, exporting, importing, etc. in a universally agreed manner. 

Furthermore, validation methods and testing procedures still lack appropriate safety 

assessment criteria to build a robust safety case. These must be set and be valid for the whole 

parameter space of scenarios. Another level of complexity is added, due to regional 

differences in traffic rules, signs, actors and situations. 

Evolving from the achievements obtained in HEADSTART and taking other project initiatives 

as a baseline, it becomes necessary to move to the next level in the development and 

demonstration of a commonly accepted Safety Assurance Framework (SAF) for the safety 

validation of CCAM systems, including a broad portfolio of Use Cases (UCs) and 

comprehensive test and validation tools. This will be done in SUNRISE, which stands for 

Safety assUraNce fRamework for connected, automated mobIlity SystEms. 
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The SAF is the main product of the SUNRISE project. As the following figure indicates, it takes 

a central role, fulfilling the needs of different automotive stakeholders that all have their own 

interests in using it, see Figure 1. 

  

 
Figure 1: Safety Assurance Framework stakeholders 

 
The overall objective of the SUNRISE project is to accelerate the safe deployment of 

innovative CCAM technologies and systems for passengers and goods by creating 

demonstrable and positive impact towards safety, specifically the EU’s long-term goal of 

moving close to zero fatalities and serious injuries by 2050 (Vision Zero), and the resilience of 

(road) transport systems. The project aims to achieve this objective by providing a SAF 

consisting of three main components: a Method, a Toolchain and a Data Framework. The 

Method is established to support the SAF safety argumentation, and includes procedures for 

scenario selection, sub-space creation, dynamic allocation to test instances and a variety of 

metrics and rating procedures. The Toolchain contains a set of tools for safety assessment 

of CCAM systems, including approaches for virtual, hybrid and physical testing. The Data 

Framework provides online access, connection and harmonization of external Scenario 

Databases (SCDBs), allowing its users to perform query-based extraction of safety relevant 

scenarios, allocation of selected scenarios to a variety of test environments, and generation 

of the test results. The SAF will be put to the test by a series of Use Cases demonstrations, 

designed to identify and solve possible errors, gaps and improvements to the underlying 

methods, tools and data. 

Following a common approach will be crucial for present and future activities regarding the 

testing and validation of CCAM systems, allowing to obtain results in a standardised way, to 

improve analysis and comparability, hence maximising the societal impact of the introduction 

of CCAM systems. 

Figure 2 shows the general workplan of the SUNRISE project. 
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Figure 2: Workplan of the SUNRISE Project  

1.2 Purpose of the deliverable  

The main objective of Work Package (WP) 5 is to define a future-proof set of commonly 

accepted and harmonised descriptions for the definition of the SUNRISE Data Framework. 

This Data Framework is essential to ensure a robust scenario-based safety assessment of 

CCAM systems, where a scenario is understood as a description of the temporal development 

of a traffic constellation. An important component of the scenario-based testing is the source 

from which the designation of executed tests is selected, the so-called SCenario DataBase 

(SCDB). WP5 targets to describe the full required properties and features of such SCDBs. 

Since the tests of CCAM systems relies on SCDBs, it is essential that the content of these 

SCDBs meets certain requirements. For example, the scenarios of SCDBs must sufficiently 

represent what the CCAM system will encounter on the road. Also, the scenarios need to span 

the Operational Design Domain (ODD) definition of the Automated Driving Systems (ADSs) 

and/or CCAM systems.  

The purpose of this deliverable is to describe quality metrics of the content of the SCDBs. 

These quality metrics could pertain to individual scenarios, such as the likelihood of the 

scenario occurring in the real world or the relevance of a scenario given a certain testing 

purpose. The quality metrics could also pertain to sets of scenarios. For example, the similarity 

or diversity of a group of scenarios or the degree to which a set of scenarios cover an ODD. 

It is expected that the metrics could be valuable metadata for individual scenarios as well as 

sets of scenarios. 

This deliverable will provide an overview of the different types of quality metrics related to 

SCDBs. An overview is given of relevant metrics that are available in the literature. In addition, 

this deliverable will present novel quality metrics that have been developed as part of the 

SUNRISE project. 

The partner contributions to this deliverable are summarized in Table 1. 
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Table 1: Partner contribution to D5.3. 

Partner Role 

TNO Led the task, contributed to metrics for coverage and exposure. 

AVL Contributed to research over existing metrics on scenario coverage, 

developed Scenario Completeness Metric and demonstrated the 

metric with UC 2.1 Scenarios using AVL SCDB. 

ICCS Contributed to metrics for scenario criticality and complexity. 

IDIADA Contributed to metrics for testing purposes and scenario exposure. 

ika Contributed by undertaking research into the existing scenario 

completeness metrics and based on these findings, further developing 

the guidelines for the scenario completeness assessment which were 

then applied within the SUNRISE use case 2.1. 

Siemens Contributed to metrics for scenario dissimilarity 

University of 

Warwick 

Contributed to scenario description requirements, coverage metrics 
for SCDBs and to Chapter 2 of the deliverable 

VEDECOM Contributed to coverage metrics and gap analysis in a scenarios 
database using a generative AI technique. 

Vicomtech Contributed to similarity metrics for scenarios at various levels of 

abstraction. 

 

1.3 Intended audience 

This deliverable serves multiple stakeholders. The main stakeholder is the SUNRISE project 

itself, as this deliverable presents quality metrics that can be utilized to quantify several 

aspects of the SCDBs that connect to the Data Framework developed in WP6.  

This deliverable is also useful for SCDB owners and SCDB hosts. The presented quality 

metrics might be implemented as part of the Application Programming Interface (API) or 

Graphical User Interface (GUI), if applicable, of their SCDB. Also, the resulting values of the 

quality metrics might be used to define what kind of data might need more attention during the 

data collection process.  

Other stakeholders for which this deliverable is intended are the users and possible auditors 

of the SAF and, more specifically, the users of the SCDBs. To properly assess the safety of 
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an ADS or CCAM system, it is important to know the quality of the scenarios that form the 

input of the safety assessment. The stakeholders could use the presented quality metrics for 

this purpose. 

1.4 Structure of the deliverable and its relation with other work 
packages/deliverables  

This deliverable is structured as follows. Chapter 2 further explains the use of metrics within 

the scope of SUNRISE, and more specifically the SAF that is developed within SUNRISE. 

Chapter 3 lists the different types of metrics that are considered in this deliverable. Metrics 

that are available in the literature are discussed in Chapter 4. Chapter 5 presents the metrics 

that are developed within the SUNRISE project. The results of applying the developed metrics 

of Chapter 5 are presented in Chapter 6. This deliverable ends with conclusions and directions 

for future work in Chapter 7. 

The following deliverables are related to this deliverable (D5.3): 

• D2.3: Final SUNRISE SAF. This is the deliverable from Task 2.2 and describes the SAF. 

The metrics presented in this deliverable are utilized within the SUNRISE SAF. 

• D3.4 [1]: Report on Scenario Selection and Subspace Creation Methodology. This 

deliverable discusses methods to generate concrete scenarios. Part of the methods use 

an iterative approach where new scenarios are generated based on metrics related to an 

earlier set of generated scenarios, such as a scenario similarity and scenario coverage 

metrics. Thus, the (dis)similarity metrics and coverage metrics presented in this 

deliverable can be employed by methods discussed in D3.4. 

• D5.1 [2]: Requirements for CCAM safety assessment data framework content. Part of the 

metrics presented in this deliverable should quantify whether the scenarios from the 

SCDBs comply with the requirements or the extent to which they comply. 
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2 SAFETY ASSURANCE FRAMEWORK 

Based on the latest SAF draft, see Figure 3, this section will follow the same workflow in order 

to provide an overview of the various places the concept of metrics are discussed during the 

project.  

 

Figure 3: Safety Assurance Framework (SAF) workflow. 

Creating diverse and comprehensive scenarios is crucial to ensure a well-rounded safety 

assurance process. As an example, if a set of scenarios is collected under some specific 

conditions, there might be a lack of diversity, which is why it is useful to measure this diversity 

using a diversity metric. This metric can also be applied to optimize the creation of knowledge-

based scenarios. In fact, various metrics could be utilized in this context, although it is 

important to note that the creation of scenarios goes beyond the scope of SUNRISE, but using 

such diversity metrics to evaluate the retrieved scenarios is within the scope.  

When considering the scenario format, it is essential that the formats cater to multiple levels 

of abstraction, aligning with the testing purposes and ensuring they are interpretable by users 

who may not be as technically proficient. These formats should also be standardized to 

facilitate consistent understanding. Another key consideration is data completeness, which 

assesses how much of the original content is accurately covered by the format.  

For the scenario storage and scenarios concretization, the focus will be on the scenario 

processability, scenario similarity, scenario coverage, scenario exposure, and data 

completeness. When allocating these scenarios to test instances, the testing purpose can 

guide the allocation process, while ensuring that the information covered in the scenario 

descriptions and that the data completeness is adequately addressed for the specific instance. 

During the execution of test scenarios, the testing purpose informs what needs to be 

measured, a process that might have already been partly addressed in the concretization 

phase.  
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Coverage analysis is another vital step, measuring the extent to which test scenarios cover 

the ODD and behaviour scope, and ensuring diversity within the scenarios. As part of the 

coverage analysis, it is important to consider how much of the logical scenario parameter 

ranges have been covered by individual concrete scenarios with their concrete parameter 

values through the parameter exploration methods. Such exploration is determined by the 

performance of the system under test (SUT) and evaluated through testing. Other coverage 

consideration points may include the diversity of scenario generation sources, and the 

diversity of (test) scenarios. An example of the diversity of scenario generation sources could 

be: a given SUT that is tested only using traffic-rule-derived scenarios. Even if they cover the 

ODD spaces of the system, from a scenario source perspective, the diversity can benefit from 

other sources such as accident data. An example of the diversity of test instances could be 

an SUT that is purely tested in virtual environment, although the test instances are validated, 

the diversity of the test environment should consider evidence from real-world test tracks or 

public road test. In addition to Coverage, the Test Evaluate block assesses individual test 

executions with the pass/fail criteria, such criteria are mostly part of the user input based on 

the individual use cases. Safety case will then consolidate the outcome from both the 

Coverage and Test Evaluate to form Safety Argument for the final safety assurance outcome. 
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3 TYPES OF METRICS 

This chapter provides an overview of the different types of quality metrics for SCDBs. An 

overview of the different types of metrics is shown in Figure 4. Six different types of metrics 

are considered: 

1. Metrics related to the testing purpose, which are further divided into metrics related to 

scenario relevance, scenario criticality, and scenario complexity; 

2. Metrics related to the scenario description; 

3. Metrics related to the scenario exposure; 

4. Metrics related to the (dis)similarity of a set of scenarios; 

5. Coverage of scenarios, for which we distinguish between ODD coverage by scenarios 

and the coverage of a parameter space; and 

6. General SCDB metrics. 

 

Figure 4: Overview of the types of metrics considered in this deliverable. For the metrics in blue, also 

new metrics are proposed in this deliverable (see Chapter 5). 

Figure 5 provides an overview of the uses of the first five types of metrics within the SAF. Each 

metric type contributes to specific phases of the SAF workflow, supporting scenario 

generation, selection, execution, and the formulation of safety arguments: 
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• Testing purpose metrics: Metrics related to the testing purpose – including scenario 

relevance, criticality, and complexity – are instrumental across multiple stages of the SAF. 

During the concretisation phase, scenario relevance helps determine which logical 

scenarios should be instantiated into concrete test cases. In the allocation phase, both 

relevance and complexity influence how scenarios are assigned to test environments or 

configurations. Furthermore, in the execution phase, these metrics guide the level of 

testing detail and focus, as higher relevance or complexity may necessitate more 

intensive or targeted testing approaches. 

• Scenario description metrics: Metrics assessing the quality and completeness of scenario 

descriptions are particularly relevant during format validation and scenario allocation. 

These metrics ensure that scenarios include all required information for execution in the 

intended simulation or test environment. A well-defined description may influence the 

selection of the test platform, as certain environments (e.g., SiL vs. HiL) may require 

different levels of detail or fidelity. 

• Scenario exposure metrics: Scenario exposure metrics, which quantify the likelihood of 

encountering a given scenario in real-world driving, inform both the concretisation 

process and the safety case development. Scenarios with higher probability may be 

prioritised for testing, ensuring that the assessed system is validated against 

representative and regulatory-relevant cases. Additionally, exposure metrics can serve 

as weighting factors in the safety argumentation, enhancing the credibility of risk-based 

safety assessments. 

• (Dis)similarity metrics: Metrics assessing scenario similarity or diversity are valuable in 

both the creation and evaluation of scenario sets. During scenario creation, especially 

when using knowledge-based methods, similarity metrics help ensure that generated 

scenarios are meaningfully distinct and cover a broad range of operating conditions. 

Within the coverage analysis phase, these metrics support the evaluation of scenario set 

diversity, ensuring that the testing scenarios are diverse. 

• Coverage metrics: Coverage metrics are foundational to the SAF and are directly 

applicable in the concretisation, coverage analysis, and safety case development phases. 

During concretisation, these metrics ensure that the resulting scenarios sufficiently span 

the system’s ODD. In the coverage phase, they provide quantitative assessments of the 

extent to which the scenario set addresses relevant operational conditions. Finally, in the 

safety case, coverage metrics underpin argumentation of completeness, helping to justify 

that the system has been validated across all relevant operational contexts. 
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Figure 5: Overview of where the different types of metrics can contribute to the Safety Assurance 

Framework (SAF) that has been introduced in Chapter 2. 

Each of the six different types of metrics are shortly introduced in this chapter. In Chapter 4, 

metrics related to these seven types of metrics are discussed. In this deliverable, new metrics 

related to the first five types of metrics, denoted the blue colour in Figure 4, are proposed. For 

the general SCDB metric (in grey in Figure 4), no new metrics are introduced in this deliverable 

as existing metrics are adopted in SUNRISE. 

3.1 Testing purpose 

Testing purpose metrics refer to the criteria used to evaluate and select scenarios within an 

SCDB to ensure comprehensive testing and validation of CCAM systems. These metrics 

encompass aspects such as scenario relevance (Section 5.1.1), which determines how 

closely a scenario aligns with the specific testing requirements and objectives; scenario 

criticality, which assesses the potential risk or danger presented by the scenario, ensuring the 

robustness of safety mechanisms; and scenario complexity, which assesses the degree of 

difficulty a scenario presents based on aspects like environmental conditions and surrounding 

traffic participants. 

By systematically applying these metrics, testers can prioritise scenarios that are relevant to 

system requirements, focus on those that involve significant risks, and ensure broad system 

applicability, ultimately contributing to the development of safer and more reliable CCAM 

systems. 

3.2 Scenario description 

Once the scenario contents are created, the next stage is to format it into a specific format to 

represent the scenario. Considering the multiple stakeholders involved in a scenario-based 

testing workflow, such as regulators, research engineers, test engineers, system engineers, 

the public, there is a need to use multiple abstraction levels for the scenario format. During 

the benchmarking stage in T3.1 [3], four levels of scenario abstractions have been identified: 

functional-level scenarios, abstract-level scenarios, logical-level scenarios, and concrete-level 
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scenarios. Each level focus on different properties, for example functional and abstract levels 

may focus on human readability, whereas logical and concrete levels may focus on machine 

readability. 

The completeness of the scenario description can be divided into technical completeness and 

test case completeness. Technical completeness should answer the question whether a given 

scenario description can be read and interpreted by a simulation software or the user. A metric 

should also answer whether the software might have to make assumptions. A metric for the 

completeness of the description of a use case should answer whether the given description is 

complete in covering the test case.  

There may be different levels of detail in the description of a scenario. Depending on the 

environment in which the scenario is used, the SUT, and the test objectives, different levels 

of detail are required. If a scenario is used in a Hardware in the Loop (HiL) environment with 

physics-based sensor models, the reflection of different surfaces is required. This may not be 

the case in a Software in the Loop (SiL) environment with non-physics-based sensor models. 

Therefore, the level of detail of a given scenario affects the (simulation) environment in which 

the scenario can be used. This also means that the completeness of the scenario description 

depends on the use case. In addition, an attribute, such as the trajectory of a vehicle, can be 

described in different resolutions. This also affects the level of detail of a scenario. 

The completeness of the description statistics indicates that all actors and the environment 

are described. Even with a complete description of the scenario, the unambiguity must be 

checked. As an example, a car can be given a non-deterministic driver model. The scenario 

description may be complete, but the scenario description is ambiguous. The unambiguity of 

a scenario is that it should be reproducible. The unambiguity is in conjunction with the scenario 

detail level. For interpolation to be unnecessary, the resolution of the trajectory must be 

sufficiently high. The objective of scenario simplification is to determine which information in a 

scenario is necessary for the desired result. The specific information that is not needed in the 

scenario description depends on the use case and the environment in which the scenario is 

replayed. Additionally, it is possible to assess whether the detail level may be higher than 

necessary. 

3.3 Scenario exposure 

Scenario exposure metrics are related to frequency, time spent, or distance travelled in a 

specific driving scenario in real-world. These metrics encompass aspects such as the 

probability of specific scenarios, the uncertainty associated with this probability, and the ability 

to predict and prepare for future scenarios. 

In practice, the exposure is typically estimated. It can be useful to also consider the uncertainty 

of the estimation. Hence, the scenario probability uncertainty is also considered.  

The UN R157 [4] requires that the ADS avoids any collisions that are reasonably foreseeable 

and preventable. Thus, it is required to determine all scenarios that are reasonably 

foreseeable. Since this is related to the scenario exposure, metrics related to this are 

considered to be part of the scenario exposure metrics.  
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3.4 (Dis)similarity of scenarios 

Scenario dissimilarity metric is used to compare individual scenarios and identify how similar 

or different the scenarios are from each other. The metrics may be applied at any scenario 

abstraction stage, whether functional, logical, or concrete. The dissimilarity of a scenario may 

be assessed with respect to scenario parameters or aspects such as trajectories of actors or 

actor types in scenarios. It may also be considered with respect to the behaviour of the SUT 

under different scenarios. 

Applications for such metrics in the SAF include: 

• Identifying redundant scenarios, such that they can be skipped to reduce test effort. By 

prioritizing unique and diverse scenarios, computational and validation resources can be 

allocated more effectively. In addition, by filtering out near-duplicate scenarios, test 

databases can be optimized, preventing unnecessary resource expenditure on redundant 

test cases (e.g., the same scenario stored across different SCDBs under different 

identifiers). 

• Clustering and categorisation of concrete scenarios to obtain logical scenarios or 

scenario categories. Logical scenarios / scenario categories help with understanding, 

storage, and querying of scenarios. 

• Promoting diversity in scenarios when using scenario generation methods such as 

optimization. Selecting representative scenarios ensures that the full spectrum of driving 

behaviours and environmental conditions is captured. This topic is further explored in 

SUNRISE D3.4 [1]. 

Given these objectives, it is imperative to establish quantitative measures of scenario 

(dis)similarity to support efficient, structured, and scalable testing strategies. 

3.5 Scenario coverage 

According to the ISO 34505 standard [5], “Scenarios, test scenarios and test cases are being 

used in order to increase coverage of various metrics and test conditions […] The coverage 

data shall be aggregated in order to support the overall argumentation for approval.” In this 

deliverable, coverage with respect to a set of (test) scenarios will be only handled since 

coverage with respect to the test cases is something broader (evaluated against test 

objectives coverage goals) and out of scope of SDDB quality metrics.  

SCDB coverage refers to the adequacy of the database in terms of the representation of all 

possible situations that the vehicle will encounter in its ODD. The ODD, for all purposes, details 

the environment and conditions in which the vehicle will operate – in urban streets, highways, 

weather conditions, and traffic situations. These scenarios need to be detailed to include all 

variables and all conditions for safety and performance: from intersection types to weather 

conditions. Therefore, comprehensive sampling and the subsequent testing of those scenarios 

are necessary so that we can be certain the vehicle will perform safely in any given situation. 

In that way, a coverage metric would allow us to determine if we need yet more data or 

scenarios or if there are enough existing data/scenarios to validate the competency of the 

vehicle. 
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Two types of metrics can be considered by: 

1. Coverage of an ODD by a set of scenarios; 

2. Coverage of a parameter space by a set of parameter vectors. 

Note: Methods to generate concrete scenarios could be based on an optimization toward a 

goal, such as coverage maximization. Thus, coverage metrics can also be used to steer the 

process of generating concrete scenarios. This is discussed in more detail in Deliverable 3.4 

of the SUNRISE project and linked with this deliverable in Chapter 5.  

3.6 General scenario database metrics 

General SCDB metrics help to optimize SCDB content. As the project progresses, general 

scenario database metrics could be used to display improvements and updates of the SCDB. 

By regularly reviewing metrics like data accuracy, number of scenarios, and covered 

kilometres, the SCDB owner/host can continuously refine and update the scenario database 

to keep pace with new findings, real-world data, and emerging edge cases. 
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4 LITERATURE REVIEW ON METRICS 

This chapter explores various existing metrics from the literature that can be used to assess 

the quality of the scenario database content. The aim is to provide a comprehensive 

understanding of the fundamental concepts underlying these metrics, rather than delving into 

the detailed (mathematical) formulations, which can be found in the referenced literature. It 

follows the same structure as Chapter 3, which can also be found in Figure 4.  

4.1 Testing purpose 

The primary purpose of scenarios within the scenario-based testing framework is to test 

specific CCAM functions in particular situations. The focus of the test is typically on analysing 

the CCAM function, such as a lane-keeping system, an automated parking system, or enabling 

technologies like decision-making, perception, or communications. Scenario metrics related 

to the testing purpose help in assessing the suitability of each scenario for testing purposes. 

These types of metrics are further divided into scenario relevance, scenario criticality, and 

scenario complexity.  

4.1.1 Scenario relevance 

Scenario relevance assesses how well a given scenario aligns with a specific CCAM function 

or enabling technology. For example, testing a pedestrian detection system with a scenario 

lacking pedestrians is ineffective, as it only measures false positives. Similarly, evaluating an 

automated parking system on a highway scenario is misaligned. Such considerations are often 

assumed to be common sense and thus are not explicitly addressed in related literature. When 

humans do not select scenarios, tags [6] can help automated systems choose relevant 

scenarios. Scenario relevance depends on the CCAM function under test. A scenario may be 

tagged for its relevance to specific CCAM functions, such as "cut-in" for frontal obstacle 

detection or more explicit tags like "relevant to Euro NCAP," "relevant to Automated Parking," 

and "relevant to Driver Monitoring”. 

For safety assurance, criticality or risk indicators contribute to “scenario relevance”.  

Criticality based: Huber et al. [7] developed a multidimensional criticality analysis framework 

for evaluating virtual traffic situations. This framework integrates various criticality metrics to 

assess scenario relevance, focusing on parameters such as the likelihood of collision and the 

complexity of traffic interactions. By combining these metrics, the framework aims to identify 

scenarios that are most critical for testing automated driving functions. Baumann et al. [8] 

proposed an automatic generation method for critical test cases. Their approach emphasizes 

the generation of scenarios that push the boundaries of the automated driving system's 

capabilities. The criticality metrics used in this method include parameters such as time-to-

collision, braking force required, and evasive manoeuvre necessity, which are crucial for 

assessing the robustness of highly automated driving functions. Koné et al. [9] introduced an 

approach to guide the search for potentially hazardous scenarios. Their method leverages 

criticality metrics to validate the safety of autonomous vehicles. The metrics include factors 

like the presence of vulnerable road users, unexpected obstacles, and adverse weather 
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conditions. These criticality metrics help in identifying scenarios that pose significant 

challenges to the vehicle's safety systems. 

Risk based: De Gelder et al. [10] developed a method for risk quantification in real-world 

driving scenarios. This method uses exposure, severity, and controllability as key metrics to 

evaluate scenario risk. Exposure measures the frequency of a particular scenario occurring, 

severity assesses the potential consequences of an incident, and controllability evaluates the 

ability of the vehicle or driver to mitigate the situation. Together, these metrics provide a 

comprehensive assessment of the risk associated with different driving scenarios. In another 

study, de Gelder et al. [11] presented a detailed approach for scenario risk quantification. This 

approach emphasizes the importance of systematically quantifying the risk to enhance the 

safety of automated driving systems. The risk metrics include parameters such as accident 

probability, injury severity in the event of a collision, and the vehicle's response time. These 

metrics are crucial for identifying high-risk scenarios that require rigorous testing and 

validation. 

4.1.2 Scenario criticality 

Criticality metrics are fundamental in evaluating and ensuring the safety and reliability of 

CCAM systems. These metrics quantify the potential risks and challenges in various traffic 

scenarios, offering a framework for assessing and mitigating hazards.  

In ISO 34502 standard [12] (Annex A-D), scenario criticality is approached by decomposing 

the scenario space into three sub-classes corresponding to the three main AD functions, 

namely perception, planning (traffic) and control, in accordance with the physics of the ADS. 

It is there argued that, if risk factors and their corresponding potentially critical scenarios 

(scenarios including one or more risk factors) are decomposed and logically structured in 

accordance with the physics of the ADS, then it is possible to provide a holistic coverage of 

all the reasonably foreseeable safety-relevant root causes for a given Dynamic Driving Task 

(DDT). This motivates the specific recommendations for perception, traffic, and vehicle control 

related risk factors, and the corresponding scenario structures elaborated in detail in Annex 

B, Annex C and Annex D respectively, of the standard. A similar approach is also followed by 

SUNRISE partners, see Section 5.1.2. 

Cai et al. [13] categorize criticality metrics into five distinct classes, each serving a specific 

purpose: 

Trajectory-based. These metrics calculate the spatial or temporal gaps between traffic 

participants based on their trajectories or positions within a scene. Examples include time 

head way [14], gap time, distance headway, Time-to-Collision (TTC) [15], worst TTC [16], time 

to closest encounter [17], time exposed TTC [18], time integrated TTC [18], time to zebra [19], 

and post encroachment time [20]. These metrics are crucial for scenarios where the precise 

movement and interaction of vehicles are central to assessing risk. 

Manoeuvre-based. These metrics measure the difficulty of avoiding an accident through 

specific manoeuvres such as braking and steering. For braking, key metrics include time to 

brake, deceleration to safety time, brake threat number [21], required longitudinal acceleration, 

and longitudinal jerk. For steering, important metrics include time to steer, steer threat number 
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[21], required lateral acceleration, required longitudinal acceleration, and lateral jerk. These 

metrics are essential for evaluating the immediate actions required to prevent collisions. 

Energy-based. These metrics assess the severity of a crash. For example, Yue et al. [22] 

used the kinematic energy of the ego vehicle to compute the scenario risk index. These 

metrics are critical for understanding the potential impact and damage severity in crash 

scenarios. 

Uncertainty-based. These metrics capture the uncertainties inherent in traffic scenarios. The 

level of uncertainty in a scenario generally correlates with the number of challenges faced by 

the System Under Test (SUT). Examples include Cafiso et al.'s [23] pedestrian risk index, 

which quantifies the temporal variation of estimated collision speed between a vehicle and a 

pedestrian, and Cunto et al.'s [24] crash potential index, which estimates the average crash 

possibility if the required deceleration exceeds the maximal available deceleration. Schreier 

et al. [25] utilized Monte-Carlo simulations to estimate behavioural uncertainties of traffic 

participants with the time-to-critical-collision-probability. These metrics are pivotal for 

scenarios with high variability and unpredictability. 

Combination-based. These metrics integrate several criticality metrics, addressing different 

aspects of a scenario to provide a more comprehensive assessment. Huber et al. [7] 

presented a multidimensional criticality analysis combining various metrics to evaluate overall 

scenario criticality. Baumann et al. [8] proposed a combination-based metric that includes 

longitudinal acceleration, time headway, and TTC. These metrics offer a holistic view but 

require careful consideration of the weights assigned to different components. 

The diverse approaches to criticality metrics underscore the complexity and multifaceted 

nature of traffic scenarios. Each class of metrics addresses specific aspects of risk, yet no 

single metric can be universally applied to all scenarios. Researchers are encouraged to 

design or adopt appropriate criticality metrics tailored to the specific conditions of different 

scenarios, as a general and objective criticality metric for all scenarios does not yet exist. 

4.1.3 Scenario complexity 

In the literature, scenario complexity is typically understood as the degree of challenge a 

scenario presents to an ADS, often influenced by the number and behaviour of dynamic 

agents, the richness of the environment, and the temporal evolution of events. However, there 

is no universally accepted definition or metric, and multiple approaches have emerged 

depending on the application context. 

An increasingly prominent approach to scenario complexity is based on information theory 

and machine learning. The COMP-AV-IT framework, for example, leverages entropy-based 

metrics to quantify the unpredictability and variability of surrounding agent behaviour, directly 

linking scenario complexity to the decision-making challenge for the AV [26].  

One line of research explores environmental and infrastructural complexity, incorporating 

factors such as road topology (e.g., intersections, merging lanes), traffic control elements 

(e.g., signals, signs), and environmental conditions (e.g., lighting, weather). Recent efforts 

such as the Dynamic Scenario Complexity Quantification (DSCQ) method propose a layered 
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view of complexity, integrating environmental, road, and traffic dynamics to estimate “Dynamic 

Effect Entropy” – a metric for quantifying uncertainty over time in evolving traffic scenes [27]. 

A structured approach to quantifying complexity has been explored in recent research. The 

DSCQ method proposed by Liu et al. [27] integrates static complexity, which assesses fixed 

scenario properties like road type and environment, and other traffic participants. Liu et al. 

[27] considers three key dimensions: natural environmental conditions, road conditions, and 

dynamic entities, denoted as 𝐶1, 𝐶2, and 𝐶3 respectively. For continuous variables, the 

complexity indices are derived directly from their values or via functional relationships, while 

for discrete variables, values are normalized between 0 and 1. For example, weather 

complexity indices are ranked based on the severity of different conditions (as outlined in 

[28]), and indices for time and types of traffic participants are adopted from [29, 30]. The 

overall static scene complexity, 𝐶scene  is computed as the product of the sum of the 

environmental (𝐶1) and road complexities (𝐶2) with the dynamic entity complexity (𝐶3), as 

given by 

𝐶scene = (𝐶1 + 𝐶2) ⋅ 𝐶3 

Here, the environmental complexity and road complexity are calculated as weighted sums: 

𝐶1 = 𝜔11𝑥11 + 𝜔12𝑥12 +𝜔13𝑥13 

𝐶2 = 𝜔21𝑥21 +𝜔22𝑥22 

In these equations, 𝜔𝑖𝑗 represents the weight assigned to the 𝑗-th factor within the 𝑖-th 

dimension and the values of 𝑥𝑖𝑗 are defined in Table 2. 

The dynamic entity complexity 𝐶3  is calculated to capture how the proximity and behavior of 

other traffic participants (TPs) influence the overall scenario complexity.  

𝐶3 = 𝛽 ⋅ 𝑉ego ⋅∑𝑓(𝑥𝑗,  𝑧𝑗)

𝑚

𝑗=1

⋅ ln(1 + 𝑒𝑥𝑗,type) ⋅ ln(1 + 𝑒𝑥𝑗,occ) 

𝑓(𝑥, 𝑧) = 0.5𝑒−|𝑥| + 0.5𝑒−|𝑧| 

where β denotes as a scale factor for adjusting the influence of 𝐶3 in the overall static 

complexity equations, 𝑚 is the number of TPs, 𝑉ego is the speed of the ego vehicle, and 𝑥𝑗 and 

𝑧𝑗 represent the longitudinal and lateral distances between the 𝑗-th TP and the ego vehicle, 

respectively. The values of 𝑥𝑗,type and 𝑥𝑗,occ are defined in Table 2. 

Table 2 systematically maps each key factor affecting scenario complexity considering 

environmental conditions, road conditions, and dynamic entity attributes to a corresponding 

complexity index. The complexity indices are directly derived from parameters specified in 

OpenSCENARIO XML files, ensuring that the quantification framework is tightly aligned with 

a standardized scenario description file. 
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Table 2: Scenario complexity indices. 

 Influence 
factor 

Notation Value Complexity 
index 

Environment Weather 𝑥11 Clear 0 

Rainy 0.25 

Light fog 0.5 

Snow 0.75 

Dense fog 1 

Illumination 𝑥12 Best computer vision 
weather 

0 

Low dynamic range 0.33 

High dynamic range 0.66 

Overall dark 1 

Time 𝑥13 Day 0 

Night 1 

Road Obstacles 𝑥21 0 0 

1 0.33 

2 0.67 

3 or more 1 

Road 
condition 

𝑥22 Dry 0 

Wet 0.33 

Slushy 0.67 

Full snow coverage 1 

Dynamic 
entities 

Types of 
traffic 
participants 

𝑥𝑗,type Pedestrian 0.7 

Ridable vehicle 0.8 

Passenger car 0.9 

Large vehicle 1 

Occlusion 
level 

𝑥𝑗,occ Up to 10% 0 

10% to 40% 0.1 

40% to 80% 0.4 

80% to 100% 1 

 

In conclusion, the resulting complexity score for each scenario can be stored as part of the 

scenario’s metadata in the SCDB. The scenario complexity assessment can be applied for 

both logical and concrete scenarios. This enables efficient categorization and visualization of 

scenarios by complexity, facilitating targeted testing of CCAM systems under a diverse range 

of driving conditions. 

4.2 Scenario description 

Metrics regarding the scenario description can take in different aspects.  Aspects can be the 

completeness, level of detail, or unambiguity of the scenario description. To the best 
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knowledge of the authors, there are currently no metrics in the classical sense like TTC or 

THW, which are commonly used in the scenario-based approach. However, there are a lot of 

requirements regarding the description which also includes the goal of a complete scenario 

description. 

In the context of scenario description, a variety of formats exist, such as ASAM 

OpenSCENARIO [31]. If a format is employed, it defines the way the constituent parts of the 

scenario are described. Consequently, it is possible to ascertain whether a given scenario file 

adheres to the prescribed format. However, this does not imply that the scenario description 

is either complete or that the level of detail is sufficient. This can only be determined when it 

is established that this is the case for the specific scenario format in question. In [32], an 

object-oriented description of driving scenarios is proposed. This Framework supports the goal 

of common understanding for scenario description. Here, attributes can be set which can 

support the required completeness of the scenario description by aligning with the format. [33] 

supports the aspect, that an alignment towards a scenario format is the first key aspect for 

assessing the scenario completeness. Thus, it argues that scenarios can be broken down into 

fundamental parts. However, we still lack the assessment of the completeness regarding the 

scenario use case or the detail level of the scenario. Other aspects like an unambiguity of the 

scenario description can be tackled by using a proposed scenario description format. 

As described in [34], the scenario description must assess different requirements. It states 

that scenarios must be transferred from the linguistically formulation into a semi-formal 

representation. Therefore, according to [34], an abstraction of the scenario description must 

be possible. Scenario shall also be human and machine readable. Although this can lead to a 

contradiction, as not all formats are compatible with these requirements. In particular, to be 

human and machine readable is not always the case.  

In [35], the scenario description level is described. It states that scenarios can either be 

described on a functional level, on a logical level, or on a concrete level. This goes in hand 

with the requirements given in [34], which require that a scenario has a representation in 

parameter ranges or be human readable. However, both sources only file for a need but do 

not provide a metric to verifying the fulfilment of the requirement. 

In [34], the scenario description is required to be complete and have a sufficient detail level. 

This is needed, so that the test procedure can be executed. However, no way of checking the 

fulfilment is given. 

A different aspect than the completeness can be the part of simplification. In [36], an approach 

is discussed how a scenario can be simplified by removing aspects of the scenario that are 

irrelevant to the goal of the scenario. However, this approach needs a simulation of the 

scenario. It is not capable of determining a simplification prior to the execution which would 

be helpful to reduce the number of overall simulations that are needed. 

4.3 Scenario exposure 

The exposure of a scenario refers to the likeliness that such a scenario is encountered. A 

common way to express this is using the scenario probability or scenario probability density. 

In Section 4.3.1, this will be discussed in more detail. Typically, the scenario probability 
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(density) is estimated. In those cases, it is often desired to know how accurate this estimation 

is. This is further discussed in Section 4.3.2. The concept of “foreseeability” is also related to 

the scenario exposure, so this is discussed in Section 4.3.3. 

4.3.1 Scenario probability 

Several methodologies have been developed to estimate scenario exposure using Naturalistic 

Driving Data (NDD) and Field Operational Test (FOT) data.  

For the scenario probability, typically a distinction is made between the probability of a “type 

of scenario”, such as an “abstract scenario” [37] and a “scenario category” [32], and the 

probability density of the parameter values within such a “type of scenario”.  

Regarding the exposure of different types of scenarios, De Gelder et al. [10, 38] have 

expressed the exposure as the expected number of encounters per unit of time for scenarios 

within a specific scenario category. Their work relies on real-world driving data, such as the 

extensive dataset from Paardekooper et al. [39], which includes 6000 km of public-road 

driving. This data-driven approach provides a robust basis for estimating exposure 

frequencies and identifying critical scenarios. 

Hakkert et al. [40] defined exposure within the context of road safety, focusing on various 

measures such as the number of kilometres travelled, time spent in traffic, and traffic volumes 

at intersections. These measures offer a practical way to quantify exposure but often require 

extensive and high-quality data, which can be challenging and expensive to collect. 

Regarding the exposure at parameter value level, much literature is available. Already a few 

decades ago, the probability density of the scenario parameters have been estimated using 

Gaussian distributions [41]. With the increase of data, more sophisticated (but data-hungry) 

methods could be employed when estimating the probability densities, such as kernel density 

estimation [10, 38]. These methods, however, generally scale very badly with increasing 

number of parameters, which is why it is not uncommon to assume that the parameters are 

independent, see, e.g., [42].  

4.3.2 Scenario probability uncertainty 

Despite the importance of the uncertainty of estimated probabilities, this has not been 

discussed often in the literature in relation to scenario exposure. However, outside the field of 

automated driving, extensive literature is available on this topic. Here, two different 

approaches can be distinguished: 

1. With the first approach, a parametric distribution is used to estimate the probability 

density, such as a normal or Gaussian distribution, or a gamma distribution. In those 

cases, the distribution parameters (not to be confused with the scenario parameters 

for which the density is estimated) are typically fitted to some data. When using a 

Bayesian approach to fit those distribution parameters, the posterior uncertainty of the 

distribution parameters can be used to estimate the uncertainty of the density [43].  
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2. With the second approach, a non-parametric distribution is used to estimate the 

probability density, such as kernel density estimation. In those cases, the uncertainty 

is either based on a theoretical model or bootstrapping is used [44]. 

Note that in [45, 38], bootstrapping is used to estimate the probability uncertainty of the 

scenario parameters’ probability density. 

4.3.3 Scenario foreseeability 

Regulations for the type-approval of ADSs require that the activated system does not cause 

any collisions that are reasonably foreseeable [46]. To determine what scenarios are 

“reasonably foreseeable”, one can look at the probability density of the parameters and 

consider the parameter values at the “edges” to be not reasonably foreseeable. Nakamura et 

al. [47] exploited this idea to determine the "reasonably foreseeable" range of parameter 

values. Their approach assumes scenario parameters are independently distributed according 

to the Beta distribution. From this, a parameter range capturing 99 % of the distribution is 

calculated and all these parameter values are reasonably foreseeable. Nakamura et al. [47] 

applied this analysis methodology to cut-in scenarios. Extending this work, Muslim et al. [48] 

performed a similar analysis for cut-out scenarios.  

De Gelder and Op den Camp [49] expanded on this approach, proposing two alternative 

methods to estimate “reasonably foreseeable” parameter values. Their first method employs 

non-parametric kernel density estimator, allowing the probability density function to adapt to 

the data without assuming parameter independence. The second approach utilizes extreme 

value theory, applying the generalized Pareto distribution to model extreme parameter values. 

These methods are demonstrated through case studies involving scenarios from [47] and an 

additional scenario where the ego vehicle approaches a slower vehicle. 

4.4 (Dis)similarity of scenarios 

Existing dissimilarity metrics for scenarios can be broadly classified as follows:  

• Dissimilarity using scenario parameters (Section 4.4.1) 

• Dissimilarity using scenario trajectories (Section 4.4.2) 

• Dissimilarity using scenario features (Section 4.4.3) 

• Dissimilarity using scenario manoeuvres (Section 4.4.4) 

4.4.1 Dissimilarity using scenario parameters 

These metrics are applied particularly to multiple concrete scenarios of the same logical 

scenario. The logical scenario is parameterized, and parameter values of different concrete 

scenarios can be used for comparison. This comparison is fast and efficient, as the scenarios 

need not be simulated, nor complete trajectory information is required. Some works which 

proposed and/or applied this method in literature are as follows:  

• Zhu et al. [50] – Used Euclidean distance in parameter space to evaluate scenarios, 

and whether they are sufficiently different to include in an archive.  
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• Zhong et al. [51] - Found unique traffic violations based on percentage difference 

between scenarios in parameter space. If dissimilarity was above a certain threshold, 

they were said to be unique. 

4.4.2 Dissimilarity using scenario trajectories:  

These metrics compute dissimilarity considering complete trajectories of all actors in each 

scenario. Such a method provides a more exhaustive comparison of the scenario but requires 

complete trajectories of the actors. Various metrics exist in literature:  

• Ries et al. [52] - Used Dynamic Time Warping to estimate similarity between 

trajectories of traffic objects. 

• Nguyen et al. [53] – Used Levenshtein edit distance to measure similarity between 

scenarios and filtered out scenarios using a threshold distance. 

• Lin et al. [54] – Created matrix profiles, which consist of dissimilarity between the sub-

sequences of one trajectory with the nearest neighbour sub-sequences from other 

trajectory. The dissimilarity is based on the number of elements lower than a certain 

threshold. 

4.4.3 Dissimilarity using scenario features:  

These metrics perform comparison on scenario features, which are defined and extracted from 

use case specifications, e.g., features of road infrastructure which is part of the ODD. Such 

metrics allow emphasis on relevant aspects (features) of the scenario and additionally 

compare beyond the dynamic behaviours of actors by also considering features related to the 

environment and road infrastructure. Some existing literature is highlighted below:  

• Kerber et al. [55] – Defined a scene distance based on occupancy of an 8-cell grid 

around the ego vehicle, and extended it to a scenario distance by summing over the 

entire scenario. 

• Kruber et al. [56] – Defined features of the road infrastructure and the object 

trajectories and use them for Unsupervised random forest clustering and learning a 

similarity measure. 

• Wheeler et al. [57] – Clustered scenarios using features extracted from scenarios at 

criticality transition. Different features such as relative speeds, accelerations, relative 

speed change, acceleration change were investigated. 

• Zohdinasab et al. [58] - Created feature maps using structural features such as such 

as road smoothness, complexity and orientation, and behavioural features like steering 

angle standard deviation and mean lateral position. 

• Nyugen et al. [53] - Used feature maps similar to [58] using features such as direction 

coverage and number of turns, to select scenarios.     
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The diversity of a set of scenarios builds upon the dissimilarity measure; by providing a 

measure to quantify overall dissimilarity across a set of scenarios. Some existing works on 

this topic are as follows:  

• Tian et al. [59] - Measure the average dissimilarity of a new scenario from an existing 

set as an indicator of diversity increase due to the scenario or novelty of the scenario. 

• Zohdinasab et al. [58] - Measure diversity using a sparseness measure, defined as the 

average maximum Manhattan distance between cells in feature maps, which were 

created by mapping scenarios to certain cells based on feature values. 

4.4.4 Dissimilarity using scenario manoeuvres 

At the logical scenario level, it is possible to extract manoeuvre information from the scenario, 

then manoeuvre sequence can be used as metric related to scenario story. This metric, 

introduced by Braun et al. [60], employs manoeuvre-based similarity metrics to compare traffic 

scenarios based on driving manoeuvres rather than raw trajectories. The core similarity 

measure is sequence alignment, specifically using the Needleman-Wunsch algorithm, which 

aligns two manoeuvre sequences by assigning scores for matches, substitutions, and 

insertions/deletions. A higher alignment score indicates greater similarity in the manoeuvre 

sequences. Additionally, this work introduces a graph-based scenario similarity 

representation, where scenarios are mapped as nodes and similarity scores determine the 

edge weights. This enables clustering of functionally similar scenarios, helping detect 

redundant test cases and ensuring comprehensive scenario selection. The authors also 

incorporate event-type weighting, where different driving manoeuvres (e.g., lane change vs. 

braking) have different impacts on similarity scoring. The final similarity score is derived from 

a weighted sum of manoeuvre alignments, accounting for both event sequence ordering and 

manoeuvre type importance. 

4.5 Scenario coverage 

The term “coverage” is commonly understood as the extent to which something addresses or 

deals with something else. In software engineering, coverage is defined as “a measure of 

verification and completeness” [61]. As described by Pizali [61], there is no single best way to 

define coverage. Coverage metrics can be customized to assess verification progress from 

different perspectives, such as functional requirements (functional coverage), the executed 

portions of code (code coverage), or the evaluated assertions (assertion coverage). For 

instance, code coverage can be measured by the lines of code executed, the branches tested, 

or the paths traversed during verification. 

In [62], the importance of coverage metrics for testing autonomous vehicles is emphasized. 

The authors argue that inadequate coverage of the situations an autonomous vehicle may 

encounter is tantamount to inadequate testing. To address this, Alexander et al. [62] proposed 

a “situation coverage metric”. They suggest that this metric should be tractable, which has two 

key implications: 

1. It should be expressible as a percentage. For example, metrics based solely on the 

number of kilometres driven or the number of (simulated) scenarios are insufficient, as 
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both can be infinite. Similarly, the number of failures found is not suitable, as the total 

number of potential failures is unknown. 

2. Achieving 100 % coverage should be possible under realistic, practical conditions. 

Therefore, measures that only reach 100 % exponentially are not applicable as these 

types of measures cannot reach 100 % with any practical means. 

In the testing of ADSs, “coverage” is often used to evaluate the adequacy of a testing effort 

and to determine when testing can be stopped [63]. Riedmaier et al. [64] defined ”scenario 

coverage” as the extent to which test scenarios cover the entire scenario space, though they 

did not provide quantitative measures. In [65], this concept is expanded by proposing several 

metrics to measure the coverage of test scenarios relative to the ODD of an ADS. Given that 

the number of possible concrete scenarios is virtually infinite [66], and considering Alexander 

et al.'s reasoning [62], concrete scenarios alone are not sufficient for a reliable coverage 

metric. Instead, scenario types or types of scenes – defined as specific moments within a 

scenario – can be considered. Hauer et al. [67] proposed a metric to estimate the number of 

unaddressed scenario types during testing, without explicitly mentioning “coverage”. In [68], a 

coverage metric based on scenes is defined, although no practical results are provided. 

In addition to measuring the coverage of testing, measures of the coverage of real-world 

driving data could be utilized. One reason to do so is because one may derive tests from the 

real-world data [69]. Another reason is because the driven kilometres may directly be used as 

a validation of the absence of unknown hazards. Compared with the amount of literature on 

coverage regarding the testing effort of ADSs, there is little literature available regarding the 

coverage of the real-world data. In [70], a criterion is proposed for the collection of naturalistic 

driving data. In [45], the asymptotic mean integrated squared error of an estimated probability 

density function is used as a metric to quantify the coverage of the collected data. A 

disadvantage of both these works is that a 100 % coverage can only be reached exponentially, 

i.e., not by any practical means. In [71], a metric is proposed based on the number of distinct 

sequences of manoeuvres of an observed object. A disadvantage of this metric is that the total 

number of distinct sequences is unknown, so a percentage cannot be calculated. Glasmacher 

et al. [72] proposed a coverage metric based on scenario parameter values. This approach 

requires selecting a parameterization and limiting the number of parameters, as achieving 

100 % coverage could be impractical otherwise.  

De Gelder et al. [73] discusses four different coverage metrics for evaluating whether collected 

scenarios adequately represent the ODD of an ADS: 

• Tag-based coverage: This metric evaluates whether collected scenarios cover all relevant 

aspects of an ODD by checking the presence of specific tags associated with scenario 

characteristics (e.g., environmental conditions, vehicle positions). It provides a 

quantitative measure to ensure diversity and completeness in scenario generation. 

• Time-based coverage: Time-based coverage checks whether all timestamps in the 

driving data are represented by one or more scenarios, ensuring that all moments within 

the data are adequately tested. It focuses on identifying gaps where certain periods lack 

scenario representation. 
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• Actor-based coverage: This metric assesses whether all relevant actors (e.g., vehicles, 

pedestrians) are included in at least one scenario, based on their proximity and interaction 

with the ego vehicle. It ensures that all important entities influencing the driving 

environment are considered in the test scenarios. 

• Actor-over-time-based coverage: Actor-over-time-based coverage extends actor-based 

coverage by ensuring that relevant actors are included in scenarios throughout the period 

they are considered important. It helps identify cases where actors may be briefly 

included but not consistently represented over time. 

Laurent et al. [74] introduces a novel approach for testing ADS by focusing on parameter 

coverage. The paper proposes parameter coverage as a criterion for ensuring that the 

parameters influencing the decision-making process of an ADS are adequately tested. A 

parameter is considered covered if changing its value leads to different simulation outcomes, 

which signifies that it affects the driving decisions in a scenario. The method involves running 

multiple simulations with different parameter values to assess whether the altered parameter 

leads to a statistically significant difference in outcomes, considering metrics like path 

deviation, safety (minimum distance to other objects), and comfort (maximum acceleration). 

Tahir & Alexander [75] provides an overview of three different coverage-based testing 

techniques used for Verification and Validation (V&V) and safety assurance of CCAM 

systems: 

• Scenario Coverage: Scenario coverage involves testing a set of predefined scenarios 

that represent different possible situations the vehicle might encounter. It aims to cover 

all combinations of temporal developments between scenes, such as lane changes or 

following another vehicle. 

• Situation Coverage: Situation coverage considers the different internal and external 

situations that a vehicle can face, ensuring testing under both expected and unexpected 

conditions. This approach aims to cover a broad range of potential situations to verify the 

robustness of SAVs in diverse environments. 

• Requirements Coverage: Requirements coverage tests whether the system under test 

meets all identified safety and functional requirements. It involves assessing the 

acceptability of scenarios based on predefined criteria. 

4.6 General scenario database metrics 

General SCDB metrics describe general characteristics, properties, or other relevant elements 

of the SCDB, typically without considering the actual content of the scenarios that are part of 

the SCDB. This could include: 

• Data Completeness: Evaluates whether all necessary data fields for each scenario are 

populated. It checks for missing values and ensures that all relevant information is 

available. 

• Data Accuracy: Assesses the correctness of the data entered into the SCDB. This 

involves cross-referencing with known benchmarks or ground truth data to ensure the 

scenarios reflect real-world conditions accurately. 
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• Data Consistency: Ensures that the data is consistent across all scenarios. This includes 

checking for uniformity in units of measurement, formats, and terminologies used. 

• Data Freshness: Measures how up to date the scenarios are. This is crucial for reflecting 

current conditions and ensuring the SCDB remains relevant. 

• Number of Scenarios: The total count of distinct scenarios available in the database. This 

provides an overview of the database's comprehensiveness. 

• Covered kilometres: The cumulative distance covered by all scenarios. This metric helps 

in understanding the breadth and scale of the scenarios included. 

• Scenario Distribution: Breakdown of scenarios by various categories such as geographic 

regions, road types, weather conditions, time of day, and traffic density. 

• Scenario Complexity: Assesses the level of difficulty presented by the scenarios. This 

can include factors like the number of vehicles, presence of pedestrians, and road 

complexity. 

• Detection Accuracy: The percentage of scenarios correctly identified and classified by the 

detection system. High accuracy indicates reliable scenario recognition. 

• False Positives/Negatives: The rate at which the system incorrectly identifies scenarios 

(false positives) or fails to detect them (false negatives). Lower rates are better. 

The following references are relevant for the general SCDB metrics: 

• ISO 21448 Safety of the Intended Functionality (SOTIF) [76]: This ISO standard outlines 

safety requirements and testing protocols for autonomous driving systems, including how 

scenarios are designed, tested, and validated using metrics like detection accuracy and 

data quality. 

• SAE J3016 Standard – Taxonomy and Definitions for Terms Related to Driving 

Automation Systems for On-Road Motor Vehicles [77]: Provides the framework for 

scenario classification, detection performance, and the use of metrics in developing and 

validating driving automation systems. 

• UNECE Regulation No. 157 on Automated Lane Keeping Systems (ALKSs) [46]: This 

regulation focuses on the safety, performance, and validation requirements for automated 

driving systems and provides guidance on metrics related to scenario coverage and 

system detection performance. 
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5 METRICS DEVELOPED WITHIN SUNRISE 

This chapter presents metrics that have been developed in the SUNRISE project. The 

structure of this chapter follows the same structure as Chapters 3 and 4, meaning that metrics 

related to testing purpose are presented first. Next are metrics related to scenario description 

and scenario exposure in Sections 5.2 and 5.3, respectively. Section 5.4 presents metrics 

related to the (dis)similarity of a set of scenarios. Lastly, coverage metrics are presented in 

Section 5.5. 

5.1 Testing purpose 

Two different metrics related to the testing purpose have been developed. The first metric 

focuses on the relevance of the scenario by considering the risk to which the system is 

exposed in a scenario. The second metric is related to this and aims at quantifying on the 

criticality of a scenario. For measuring the complexity of a scenario, the method of Liu et al. 

[27] is applied in Chapter 6. Since this metric has already been discussed in Section 4.1.3, 

this chapter does not contain a contribution for the scenario complexity metric. 

5.1.1 Scenario relevance 

SUNRISE has developed a systematic scenario quality metric to prioritize high-risk scenarios 

from a SCDB for testing. This metric uses a hypothesis test that compares a subset of testing 

scenarios against the full set of ODD scenarios, using risk as the test variable. Risk is 

calculated based on three critical factors: severity, controllability, and exposure. By analysing 

the risk distribution across these scenario sets, the method ensures that the selected 

scenarios reflect a higher overall risk, increasing the relevance and effectiveness of testing. 

The main objective is to provide a structured approach for selecting scenarios that accurately 

represent the most demanding real-world challenges faced by CCAM systems. This ensures 

that proving ground tests focus on the most critical situations, enhancing system safety and 

robustness. 

Figure 6 presents an overview of the procedure for evaluating the relevance of scenarios, 

broken down into four steps (highlighted by coloured boxes). 
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Figure 6: Schema of the overall procedure for evaluating the relevance of scenarios. 

 
Step 1 - Scenario Selection 

A subset of scenarios is selected from existing SCDBs (such as Safety Pool, StreetWise, 

PEGASUS, ADScene) for a specific ODD. This selection process can be facilitated by 

SUNRISE DF, which provides a structured methodology for querying and retrieving relevant 

scenarios. Using the SUNRISE DF Dashboard, users can specify the SCDBs to be queried, 

apply advanced filtering criteria based on scenario metadata (e.g., road geometry, traffic 

conditions, and environmental factors), and retrieve scenario packages. 

Step 2 - Risk Estimation 

Each selected scenario's risk is estimated using a methodology adapted from [78] which 

evaluates accident risk using a predefined catalogue of influencing risk factors called Criticality 

Phenomena (CPs). These CPs represent specific factors linked to increased criticality in traffic 

scenarios, derived from a detailed analysis of the German In-Depth Accident Study (GIDAS) 

database. 

The approach begins by decomposing the Operational Domain (OD) (e.g., urban scenarios 

involving passenger cars) into relevant CPs, guided by the criticality analysis framework 

proposed by Neurohr et al. [37]. CPs are categorized into two groups according to Damm and 

Galbas [79]: 

• CPs relevant to human traffic – These are influencing factors independent from 

perception systems, such as occluded pedestrians at urban intersections or reduced 

road friction. 
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• CPs specific to ADSs – These are phenomena influenced by the reliance on sensor 

technology for perception. These are not covered in the current analysis due to the 

absence of ADS-specific accident data in GIDAS.  

Following ISO 26262 [80] and ISO 21448 [76] guidelines, accident risk is factorized into three 

elements: exposure, controllability, and severity. Bayes' theorem is used to formulate the risk 

estimation, decomposing it into three key probabilities: 

• ℙ(CP|Accident, OD): Likelihood of a specific CP occurring in an accident, based on 

GIDAS data. 

• ℙ(Accident|OD): Overall accident probability within a given OD, obtained from accident 

statistics. 

• ℙ(Severity|Accident, CP, OD): Severity distribution of accidents, derived from GIDAS 

severity data. 

Using these three probabilities, the risk can be calculated as follows: 

Risk(CP, Accident, Severity|OD) 

= ℙ(CP|OD)⏟      
Exposure

ℙ(Accident|CP, OD)⏟            
Controllability

ℙ(Severity|Accident, CP, OD)⏟                  
Severity

 

= ℙ(CP|Accident, OD)ℙ(Accident|OD)ℙ(Severity|Accident, CP, OD) 

This probabilistic decomposition enables CP-related risk estimation using accident databases 

and national statistics, ensuring data-driven and system-independent risk quantification. For 

scenarios with multiple CPs, risk values are aggregated, allowing for a comprehensive 

evaluation of complex scenarios: 

Risk(scenario) = 1 −∏(1 − Risk(CP,Accident,Severity ≥ 1|OD)𝑖)

𝑛

𝑖=1

 (1) 

where: 

• Risk(CP,Accident,Severity ≥ 1|OD)𝑖 is the 𝑖-th CP risk in the scenario; 

• ∏ (1 − Risk(CP,Accident,Severity ≥ 1|OD)𝑖)
𝑛
𝑖  is the probability that none of the CPs occur; 

• Risk(scenario) is the risk that at least one CP occurs, which represents the risk of the 

scenario. 

By using this structured approach, the scenario quality metric ensures a rigorous and 

representative risk assessment, leading to more relevant and effective scenario selection for 

testing. The framework is also adaptable for future criticality analyses involving ADSs by 

highlighting requirements for accident data collection, particularly for ADSs at SAE Levels 4. 

Although the current study focuses on human traffic-relevant CPs, the framework is adaptable 

to future ADS data sources. 
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Step 3 - Acceptance Criteria Definition 

A threshold is defined to filter out low-risk scenarios, prioritizing the most critical scenarios for 

testing. For example, the threshold can be set as a risk higher than the mean plus one 

standard deviation of the ODD scenario risks. Scenarios that meet this criterion form the pool 

from which the final test sample is randomly selected.  

Step 4 - Relevance Evaluation 

The relevance of the test scenario sample is evaluated against the reference distribution (from 

the scenarios that meet the acceptance criteria) using statistical hypothesis testing. The null 

hypothesis states that the mean risk of the test sample is lower than that of the reference 

distribution. 

The relevance metric is defined by the p-value obtained from this hypothesis test. Specifically, 

if the p-value is below 5%, the null hypothesis is rejected, and the alternative hypothesis is 

accepted. This confirms that the selected scenarios are representative of the reference 

distribution, accurately reflecting the most critical scenarios. 

5.1.2 Scenario criticality 

There exist two high-level approaches in assessing criticality of a scenario. The first approach 

(scenario based) is based on attributes and characteristics of the scenario itself as well as the 

agents involved and can be assessed before the scenario is executed (i.e., final trajectories 

are not known). The second approach (test case outcome based) is based on the assessment 

of the scenario outcome as a test scenario – including a given SUT – and is mainly considering 

the final trajectories of all agents involved upon execution. This means that a scenario 

characterized as critical upon execution is tightly connected to a specific SUT. The metrics 

discussed in Section 4.1.2, i.e., trajectory, manoeuvre and energy-based metrics (e.g., TTC, 

post encroachment time) are relevant here. 

These metrics are used in the context of SUNRISE critical scenario generation from methods 

designed to efficiently explore the scenario space for critical scenarios based on a given set 

of criticality metrics (see SUNRISE D3.4 [1]). The existing metrics as reviewed in Section 4.1.2 

are mostly looking at the criticality of the full AD stack and utilize the outcome trajectories or 

manoeuvres for criticality assessment. However, a similar approach to the ISO 34502 

standard [12] could be employed by distinguishing the metrics into sub-classes according to 

the AD function of interest, that is perception, planning (traffic), and control or full AD stack. In 

this direction, we propose the use of:  

1. Perception outcome metrics (e.g., false positives, accuracy, f-score): in the context of 

automatic scenario generation, these will help us generate scenarios critical for the 

Perception subsystem (as recommended by the ISO 34502): 

a. Minimum Precision/Recall of vehicle detection 

b. Minimum Precision/Recall of pedestrian detection 

c. Minimum Road/Lane recognition: mean intersection of union 

2. Collective perception outcome metrics (e.g., V2X messages loss rate): in the context of 

automatic scenario generation, these will help us generate scenarios critical for the 

Collective Perception subsystem: 
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a. Maximum V2X messages loss rate 

b. Minimum Precision/Recall of vehicle detection in the global Collective 

Perception Message (CPM) 

c. Minimum Precision/Recall of pedestrian detection in the global CPM 

3. Planner/Control outcome metrics (e.g., TTC, trajectory prediction accuracy, RMSE): in the 

context of automatic scenario generation, these will help us generate scenarios critical for 

the Control subsystem (as recommended by the ISO 34502): 

a. Metrics that can also be computed online 

i. Minimum TTC 

ii. Minimum time to intersection violation 

iii. Collision incident 

iv. Collision type/severity (categorical) 

b. Metrics that are computed offline 

i. Minimum post encroachment time 

5.2 Scenario description 

First, some guidelines for the scenario description are presented. Even though these 

guidelines do not come with metrics, they are important enough to be presented here. 

Conformance to these guidelines requires a qualitative assessment. Next, conformance to 

standardized language using a taxonomy is discussed. Finally, a metric is presented to 

quantify the completeness of a scenario description.  

5.2.1 Scenario description guidelines 

For a given scenario description, the quality and completeness should be assessed. For this, 

a three-step methodology has been developed. Based on three guidelines, the completeness 

can be determined. Completeness requires requirements to assess the completeness, thus a 

use case for the scenario is needed. Therefore, completeness cannot be determined in 

general, therefore the guidelines will help to determine it for the use case.  

The methodology applies for concrete scenarios [35]. A concrete scenario should be given in 

a known scenario format (e.g. OpenSCENARIO XML). This enables interoperability. In terms 

of completeness, a scenario format gives a baseline on how elements are defined. For the 

completeness on the technical level, the following guidelines is given: 

Guideline 1: A given concrete scenario should align with a given scenario format. 

This allows to implement rules that can be checked against. For example, an OpenSCENARIO 

XML file can be checked for conformity with the XML format. Generally, there can be multiple 

rules for each scenario format to assess the conformity. The conformity is the first step to 

assess the completeness, as conformity ensures that the scenario adheres to the required 

structure and syntax before evaluating its content for consistency and sufficiency. 

In the second step, the content of the scenario itself should be checked for completeness. The 

check can be done independently of the use case and only the scenario with itself is checked. 

Thus, it is required that the content of the scenario is plausible within itself. This leads to the 

following guideline: 
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Guideline 2: The content of the scenario should be plausible within itself. 

In the third step, requirements of the use case will be checked for the completeness of the 

scenario. As the scenario is given in a scenario format, this gives a boundary of what can be 

defined. It is assumed that the scenario format allows to describe the intended scenario. Thus, 

only a gap between the concrete scenario and the use case must be determined. Therefore, 

requirements on the description can be derived from the use case and checked for in the 

scenario. 

Guideline 3: The scenario description must contain all required information from the use case. 

5.2.2 Consistent use of taxonomy 

As the number of scenarios within a SCDB continues to grow, along with increased 

collaboration among industrial and research stakeholders, there is a rising demand for a 

systematic structure that enables efficient storage and retrieval. The SCDB must be able to 

accommodate scenarios at varying levels of abstraction and ensure that they are stored in a 

structured manner to support scalability, consistency, and efficient querying. 

With ODD and behaviour specifications serving as inputs to the SAF – whose primary goal is 

to ensure safe operation within defined boundaries, it is essential to align the terminologies 

used in scenario descriptions with that of the ODD and behaviour definitions. This alignment 

establishes a clear traceability between the scenario descriptions and the system's intended 

operational limits. Maintaining consistency in the terminologies used within the scenario 

description is crucial to the SAF, as it ensures a cohesive evaluation framework for assessing 

the safety claim. When scenario descriptions adhere to a common vocabulary and 

standardized structure, the SAF can reliably assess whether the input ODD and behaviour 

specifications are sufficiently represented within a set of scenarios. 

Additionally, the usage of common terminologies across the database facilitates efficient 

retrieval of the scenarios. To achieve this, a tagging system can be implemented, which relies 

on shared keywords across different levels of scenario abstraction. This system ensures that 

scenarios can be systematically categorized and retrieved based on specific attributes. 

However, for tagging to be effective, scenario descriptions within the database must follow a 

standardized vocabulary at one level of abstraction in the least. This allows relevant tags to 

be consistently assigned, ensuring interoperability across different stakeholders.  

The common vocabulary used across the SCDB may be based on ISO 34503, which provides 

a taxonomy for ODD attributes. This taxonomy has been further incorporated into BSI Flex 

1889, which expands on ODD attributes and includes behavioural specifications within 

formalized natural language descriptions of scenarios. By adhering to a well-established 

taxonomy, the SCDB can maintain consistency across scenarios, even as different 

stakeholders work with varying levels of abstraction.  

One key advantage of using a standardized taxonomy is that it allows for a structured 

extension of attributes while maintaining uniformity. When stakeholders introduce new 

scenario attributes, they can extend existing categories systematically. For instance, consider 

a scenario that involves a pedestrian crossing. If a user wants to refine this attribute by 

specifying different types of pedestrian crossings, the parent attribute ("pedestrian crossing") 
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can be expanded to include child attributes, such as pelican crossing, puffin crossing, toucan 

crossing, etc. 

By explicitly defining the parent-child relationship, new attributes are seamlessly integrated 

into the SCDB while preserving a structured format. This structured extension benefits other 

users who may not have initially considered these attributes but can now relate new additions 

to existing taxonomy categories. 

Consider Scenario A in Figure 7, which does not comply with the hierarchy of the database it 

belongs to. In this case, the attribute "Spiral" is incorrectly categorized as a direct child of 

"Scenery", making it difficult to assess its relationship with other attributes, especially in a 

large-scale SCDB containing numerous scenarios. Here, "Spiral" refers to a specific type of 

roundabout that is commonly be found only in a certain geographical region. However, this 

term may not be immediately recognizable to other SCDB users, particularly those unfamiliar 

with the road infrastructure of that specific region. 

 

 

Figure 7: Examples of an ODD class hierarchical branch from a scenario description that are non-

compliant (Scenario A) and compliant (Scenario B) with a standard taxonomy. 

 
An ideal scenario description (such as Scenario B in Figure 7) follows the standardized 

taxonomy, ensuring that attributes are correctly associated with their relevant parent 

categories. If Scenario A were structured accordingly, "Spiral" would be explicitly linked to 

"Roundabouts", making its function and relevance immediately clear to all users. This 

structured approach not only enhances clarity but also enables deeper analytical 

assessments, such as evaluating scenario coverage to identify gaps or imbalances in 

scenarios within the database. 

Ultimately, the consistent use of both a standardized language and taxonomy across scenario 

descriptions while not a metric, is foundational to enabling meaningful quality assessments of 

the SCDB. A shared vocabulary ensures that scenario attributes can be accurately tagged 



 

D5.3 Quality metrics for scenario database content  | 47 

and retrieved, while the taxonomy provides the structural framework to extend branches. This 

consistency supports downstream analyses such as scenario coverage, where the presence 

or absence of specific attributes can be systematically identified and compared against a given 

ODD definition which would follow the standardised vocabulary. 

5.2.3 Scenario description completeness 

The scenario description completeness metric evaluates the overall completeness of a 

scenario description by assessing whether it contains all required and optional suggested 

elements. The completeness is categorized into two levels: core completeness and descriptive 

completeness.  

Core completeness considers whether the individual scenario has the required elements that 

the scenario is meaningful and can be executed in a test execution environment. These 

elements consist of: 

• Scenario Artifact: The scenario definition shall be included at least in one file that has 

been defined on a standard. E.g., a validated OpenSCENARIO XML file (.xosc). 

• Road Definition: The defined road in a scenario file must be present in a SCDB. If the 

road file does not exist in the SCDB, the scenario could not be executed. 

• Scenario Parameters: Parameters shall be defined in the scenario description file so that 

the parameter space can be configured in the SAF.  

Descriptive completeness assesses whether a scenario includes optional metadata, such as 

end conditions, taxonomy classification, descriptions, illustrative media, and defined entity 

types, to enhance usability and clarity. 

• End Conditions: Clearly defined success/failure conditions for terminating the test.  

• Taxonomy: Proper categorization within the SCDB taxonomy.  

• Description & Illustrative: Informative descriptions and media (e.g., images, videos).  

• Entity (Actor) Types: Clear definition of scenario participants (vehicles, pedestrians, 

cyclists, etc.). 

Finally, the overall completeness state of a SCDB is assessed as follows (see Figure 8): 

• Incomplete: If any scenario lacks at least one core completeness criteria. 

• Missing Information: If any scenario lacks descriptive completeness but meets core 

completeness. 

• Complete: If all scenarios meet both core and descriptive completeness requirements. 
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Figure 8: Data completeness table. 

5.3 Scenario exposure 

One of the goals of safety validation is to prospectively evaluate the risk of an ADS dealing 

with real-world traffic. Scenario-based assessment is a widely used approach, where test 

cases are derived from real-world driving data. To allow for a quantitative analysis of the 

system performance, accurately estimating the scenario exposure is essential for reliable 

safety assessment. A Probability Density Function (PDF) quantifies the exposure of scenarios 

at the parameter level. However, assumptions about the PDF, such as parameter 

independence, can introduce errors, while avoiding assumptions often leads to oversimplified 

models with limited parameters to mitigate the curse of dimensionality. 

One method that does not rely on assumptions on the shape of the PDF is Kernel Density 

Estimation (KDE), which is a non-parametric method for estimating the PDF of a dataset. 

Given a set of observations {𝑥𝑖}𝑖=1
𝑁 , KDE estimates the density at a point 𝑥 by averaging kernel 

functions 𝐾 centered around each data point: 

𝑝̂(𝑥) =
1

𝑁ℎ
∑𝐾(

𝑥 − 𝑥𝑖
ℎ

)

𝑁

𝑖=1

, 

where ℎ is the bandwidth parameter that controls the level of smoothing. The choice of ℎ is 

crucial – too small a bandwidth leads to overfitting, while too large a bandwidth oversmooths 

the density estimate. A common method for determining ℎ is leave-one-out cross-validation 

because this minimizes the difference between the real PDF and the estimated PDF according 

to the Kullback-Leibler divergence [81, 82]. Commonly used kernel functions include 

Gaussian, Epanechnikov, and uniform kernels [83]. KDE is widely used due to its simplicity 

and ability to approximate arbitrary distributions without assuming an underlying parametric 

model.  
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In the field of assessment for ADSs, KDE has been used to estimate the exposure of concrete 

traffic scenarios. For example, in [10], a method is proposed for quantifying the risk in 

alignment with the ISO 26262 standard, where risk is determined based on exposure, 

controllability, and severity. In their approach, exposure is estimated by constructing a PDF 

using KDE. However, the KDE-based PDF estimation becomes inefficient in high-dimensional 

spaces due to the curse of dimensionality [84]. 

To address the curse of dimensionality that KDE is suffering from, Normalizing Flows (NF) 

offer a more flexible, deep-learning-based alternative capable of modelling complex, high-

dimensional distributions. NF are a class of generative models that estimate complex 

probability distributions by transforming a simple base distribution (e.g., Gaussian) through a 

sequence of invertible and differentiable mappings [85]. If 𝑓𝜃 is a transformation parameterized 

by 𝜃, we can compute the density of x using the change of variables formula: 

𝑝(𝑥) = 𝑝𝑧(𝑧) |det
d𝑓𝜃

−1(𝑥)

d𝑥
|, 

where 𝑧 = 𝑓𝜃
−1(𝑥) follows the known base distribution. By learning a complex mapping 𝑓𝜃, NF 

can approximate multimodal distributions and capture intricate dependencies between 

variables. 

NF methods, such as RealNVP [86], Masked Autoregressive Flows [87], and Neural Spline 

Flows [88], have gained popularity due to their scalability and ability to model high-dimensional 

densities. However, they require computationally expensive training and careful selection of 

model depth, transformations, and optimization hyperparameters. 

In summary, KDE is best suited for low-dimensional data (typically 𝑑 ≤ 3), where a simple and 

interpretable density estimation method is sufficient. Its non-parametric nature makes it easy 

to implement, computationally efficient, and requires no training, making it a practical choice 

when speed and clarity are priorities. However, as dimensionality increases, KDE becomes 

inefficient due to the curse of dimensionality, leading to inaccurate estimates. In contrast, NF 

scale better with higher dimensions where complex dependencies exist between variables. 

By leveraging deep learning and invertible transformations, NF can model intricate PDFs 

without restrictive assumptions. While NF provides greater flexibility and expressiveness, it 

comes at the cost of higher computational complexity and the need for training. As a result, 

KDE is the preferred approach for simpler, low-dimensional problems, whereas NF is the 

better choice for applications requiring scalability and rich density modelling despite its 

increased computational demands. 

5.4 (Dis)similarity of scenarios 

A fundamental consideration when defining scenario similarity is the level of abstraction at 

which comparisons occur. Scenario relationships can be analysed at three primary levels: 

4. Abstract level – High-level categorization based on general driving behaviours (e.g., 

merging, overtaking, emergency braking). 

5. Logical level – Structural comparisons using event sequences, parameter constraints, and 

manoeuvre definitions. 
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6. Concrete level – Fine-grained comparisons incorporating numerical parameters, vehicle 

trajectories, and temporal execution data. 

Based on the categorization above, the definition of similarity metrics varies across different 

levels. At the abstract level, similarity is mainly determined by semantic relationships, 

emphasizing intent and functional categorization of scenarios. In contrast, lower-level 

assessments rely more on quantitative metrics, such as numerical parameter comparisons. 

At the logical level, factors like event sequencing and trajectory alignment play a crucial role. 

Given that scenario descriptions contain tags, regardless of the abstraction level, these tags 

can serve as a universal similarity metric across all levels. By leveraging tag-based 

comparisons, we can establish a consistent approach to scenario similarity assessment. We 

introduce tag-based similarity by formally defining tag overlap using the so-called Tag 

Similarity Score (TSS). The TSS is defined as the Jaccard similarity coefficient (intersection 

over union) between two sets of tags, 𝐴 and 𝐵:  

TSS =
|Tags(𝐴) ∩ Tags(𝐵)|

|Tags(𝐴) ∪ Tags(𝐵)|
 

For example, if 𝐴 = {Highway,Merging, Daytime} and 𝐵 = {Highway, LaneChange}, we have 

TSS = 1/4. 

To ensure a meaningful Tag Overlap Index, the existence of a common ontology at the 

federative layer, which provides a Uniform Resource Identifier (URI) for each tag, is essential. 

This ontology ensures that tags are standardized across different databases, preventing 

mismatched or inconsistent tagging that could otherwise distort similarity measurements. 

5.4.1 Abstract-level similarity 

For abstract-level classification, Natural Language Processing (NLP) techniques can be 

employed to analyse scenario descriptions. Ontology-based classification, semantic 

embeddings, and clustering techniques help establish functional categories, reducing 

ambiguity in scenario relationships. For abstract-level comparisons, we propose the use of 

Sentence Bidirectional Encoder Representations from Transformers (SBERT) [89] to encode 

scenario descriptions into numerical representations. The similarity between scenarios is then 

computed using cosine similarity [90]. 

SBERT generates fixed-size dense vector embeddings using a pre-trained transformer model 

fine-tuned on semantic textual similarity tasks. These embeddings capture sentence-level 

meaning and can be directly compared using cosine similarity. Alternatively, OpenAI's 

embedding models (such as text-embedding-ada-002) produce highly contextualized 

representations based on larger training data and more recent architecture. They are 

particularly strong in capturing semantics, causal reasoning, and longer sequences of events 

due to broader token-level attention during embedding generation [91]. 

5.4.2 Logical-level similarity 

Logical-level scenario similarity in OpenSCENARIO requires a structured approach due to 

variations in scenario definitions and external file references. To ensure a fair comparison, we 

first identify common parameters between two scenarios, extracting only those that exist in 
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both. Parameter similarity is computed using Jaccard overlap on numerical ranges, measuring 

shared constraints such as speed limits and lateral object offsets. For two scenarios with 

common parameter ranges [𝑎1, 𝑏1] and [𝑎2, 𝑏2], the Parameter Similarity Score (PSS) is: 

PSS =
|max(𝑏1, 𝑏2) − min(𝑎1, 𝑎2)|

|min(𝑏1, 𝑏2) −max(𝑎1, 𝑎2)|
 

5.4.3 Concrete-level similarity 

Two different approaches are presented. The first approach focusses on the comparisons of 

the trajectories of the scenario actors, while the second approach calculates the similarity 

between two scenarios based on the most critical scene. 

5.4.3.1 Concrete-level similarity based on trajectories 

At the concrete level, scenario similarity depends on the source and the type of data available 

[92], different types of scenarios exist: 

• Recorded scenarios consist of logged time-series data, such as vehicle trajectories 

collected from real-world driving. 

• Executable scenarios contain scripted instructions for traffic participants, specifying the 

manoeuvres and actions they must perform in a simulation. 

Trajectory-based similarity metrics are only applicable when detailed trajectory data is 

available, typically in recorded scenarios. These trajectories can be compared using 

spatiotemporal trajectory metrics, such as: Dynamic Time Warping (DTW) [93], Hausdorff 

distance [94] or Fréchet distance.  

The fundamental distinction between these methods lies in their treatment of spatial alignment 

and temporal correspondence. For example, DTW accommodates non-linear temporal 

variations, whereas Hausdorff and Fréchet distances primarily capture geometric similarity. 

To further elucidate these differences, the metrics are computed and visualized in the context 

of a simple takeover scenario, as shown in Figure 9, which highlights the key contrasts 

between the methods. 
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Figure 9: Comparison of the Hausdorff and DTW distances between two takeover scenarios. 

Instead of comparing full trajectory there is possibility of inspecting critical moments. 

Mahadikar et al. [95] introduce a dissimilarity metric that prioritizes the most safety-critical 

scenes rather than the entire trajectory. Instead of comparing the whole path, they focus on 

the point of maximum risk (e.g., the minimum distance between vehicles before a crash). 

As a similarity metric for executable scenarios, we propose a hierarchical tree-based approach 

for comparing OpenSCENARIO files by analysing both structural organization and content 

similarity. By parsing OpenSCENARIO files into nested dictionary representations, we can 

evaluate scenario similarity based on tree structure (branches and nodes) and leaf values 

(parameters and attributes). Structural similarity is computed using tree-edit distance or graph-

based techniques, while content similarity relies on exact matching, Jaccard similarity (for 

attributes), and range-based comparisons (for parameters). The final similarity score 

combines these two metrics, ensuring meaningful comparisons even when scenarios contain 

dynamically assigned parameters or cross-file references (e.g., OpenDRIVE road networks 

and vehicle catalogues).  

In practice, Python libraries such as DeepDiff can be leveraged to extract and compute 

differences between highly nested OpenSCENARIO structures. By applying Jaccard-based 

metrics, we can quantify similarity using measures such as shared nodes over total nodes, 

effectively capturing both structural overlap and content-based differences. 

For a given scenario set, the aggregated similarity score can be computed using a weighted 

summation over all valid metrics: 

𝑆 =  ∑𝑤𝑖𝑆𝑖
𝑖

, 

where 𝑤𝑖 is the weight assigned to the 𝑖-th similarity metric, 𝑆𝑖, ensuring adaptability based on 

scenario characteristics. 
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5.4.3.2 Concrete-level similarity based on most critical scene 

The literature review on dissimilarity metrics showed that many previous works compute 

dissimilarity by comparing entire trajectories across two scenarios. Here, a novel method for 

computing scenario dissimilarity is proposed which prioritizes the most safety-critical scene, 

while still accounting for the complete trajectory information of involved actors [95]. The most 

safety-critical scene may be defined considering different safety metrics. Below, we consider 

the distance of the ego vehicle to other scenario actors for scene criticality. The distance of 

ego vehicle to other actors is a suitable measure of scene criticality as it directly signifies 

imminent collision risk. Thus, the scene with the minimum distance of ego vehicle to other 

actors is the most safety-critical scene in the scenario.  

Some assumptions and guidelines are devised for scenario dissimilarity:  

1. Scenarios are different when operational conditions are different, e.g., road layout, weather, 

static environment, etc.  

2. Scenarios are different when the actors in a scenario are different.  

3. The trajectories followed by actors in a scenario can be abstracted by using a grid cell 

sequence on top of a road layout. Figure 10 (A) shows such an abstraction. Two scenarios 

are different when the grid cell sequences traversed by actors are different. Thus, the two 

scenarios shown in Figure 10 (B) and (C) are dissimilar.  

4. The variables of interest when describing dissimilarity depend on the application use case 

[96]. For example, while comparing scenarios for testing a motion planning system, 

important features could be locations and velocities of all actors at the instant of criticality. 

In contrast, if the goal is to evaluate the perception system, features such as vehicle colour 

or size might also be important. 

These pre-conditions define the boundaries for the dissimilarity metric definition and 

demonstrate how the metric definition could be adapted for different application use cases. 

For the metric formulation and the application example in this study, a motion planning system 

use case is considered. Thus, the variables of interest considered are positions, orientations, 

and velocities of the involved actors in the scenario. The subsequent section explains how the 

dissimilarity metric is formulated with respect to these variables of interest, considering the 

most safety-critical scene. 
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Figure 10: (A) shows the grid cell abstraction on top of the road network. (B) and (C) are two 

scenarios where the grid cells traversed by actor trajectories are different, and therefore the two 

scenarios are considered dissimilar. 

Metric formulation 

To quantify dissimilarity at the most safety-critical scene, a combination of discrete and 

continuous features can be considered. Discrete features have distinct, unordered values and 

can be categorized into groups. An example of a discrete feature could be the actor type 

associated with the safety-critical scene. These features, if different between scenarios, lead 

to completely different scenarios. Continuous features represent an infinite number of values 

within a defined range, for example, the values of positions or velocities of actors at the instant 

of maximum criticality. Thus, the dissimilarity when considering continuous features is also 

more continuous.   

While considering the interaction of actors in the most safety-critical scene, two discrete 

features are: (1) actor type to which the minimum distance is observed, and (2) the grid cell 

which the ego vehicle occupies in the most safety-critical scene. If either of the discrete 

features differs between scenario 1 and scenario 2, the scenarios are considered dissimilar: 

ΔActorType = {
0 if ActorType1 = ActorType2
1 otherwise

∈ {0,1}, 

ΔGridCell = {
0 if GridCell1 = GridCell2
1 otherwise

∈ {0,1}. 

The orientation angles of the scenario actors at maximum criticality are selected as continuous 

features for dissimilarity. Two angles are considered as shown in Figure 11: the relative 

heading angle 𝜃rel and the potential collision angle 𝜙c in the ego vehicle frame. These angles 

are selected due to their influence on safety. The 𝜃rel defines the orientation difference 

between two actors, which determines how they approach each other. The 𝜙c indicates the 

location of the other vehicle in the ego-vehicle frame and provides insight into the potential 

severity of collision as well as the responsibility of the ego vehicle in the incident. To quantify 
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the magnitude of dissimilarity, the cosine similarity index [90] is used to obtain a normalized 

value between 0 and 1.  

ΔHeading = ΔH = 0.5(1 − cos(𝜃rel1 − 𝜃𝑟𝑒𝑙2)) ∈ [0,1] 

ΔCriticalPointAngle = ΔC = 0.5(1 − cos(𝜙𝑐1 −𝜙𝑐2)) ∈ [0,1] 

ΔCombined = 𝑤1ΔH + 𝑤2ΔC, 

where 𝑤1 = 𝑤2 = 0.5 can be adjusted to prioritize ΔH over ΔC or vice versa. Finally, the 

dissimilarity computed using discrete and continuous features are combined to a final 

dissimilarity value between two scenarios: 

Δ(Scenario 1, Scenario 2) = max(ΔActorType, ΔGridCell, ΔCombined). 

 

Figure 11: The relative heading angle 𝜃𝑟𝑒𝑙 and the potential collision angle 𝜙𝑐 are the selected 

continuous features for dissimilarity. 

5.5 Coverage 

Two different approaches for measuring coverage are proposed. The first type focuses on the 

coverage of an ODD by a set of scenarios. The second approach focuses on the coverage of 

the parameter values of a set of test scenarios given the underlying distribution of these 

parameter values. 

5.5.1 ODD coverage by scenarios 

The following text on coverage metrics is taken from [73], where coverage is defined as the 

degree to which a set of scenarios observed in real-world data cover an ODD. To further 

distinguish the metrics that are proposed later in this section, two types of coverage are 

considered, both aiming to answer different questions: 

• Type I: Do the collected scenarios cover all relevant aspects of an ODD? 

• Type II: Do the collected scenarios cover all relevant aspects that are in the driving data? 
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Four different coverage metrics are proposed. The first metric is the tag-based coverage, 

which addresses coverage type I. The other three metrics, i.e., time-based coverage, actor-

based coverage, and actor-over-time-based coverage, address coverage type II.  

5.5.1.1 Tag-based coverage 

A shared keyword structure established across the database enables tag-based analysis 

which becomes an efficient method to evaluate the coverage and balance of scenario across 

the database. By systematically assigning tags to all scenarios, it becomes possible to assess 

whether certain attributes are underrepresented or entirely absent within the database. This 

approach ensures that the SCDB is diverse, well-distributed, and capable of supporting 

different kinds of robust analysis across various use cases. 

Figure 12 illustrates how a tag-based approach can be used to evaluate the coverage of a 

defined ODD within a database. A set of tags representing the ODD is used as input to query 

the database, and the resulting data is then analysed to assess how comprehensively the 

input ODD attributes are covered. 

One of the key advantages of using a structured taxonomy is the ability to perform coverage 

analysis at different levels of the taxonomy. This approach allows for a detailed evaluation of 

each level within the taxonomy to verify that for a given ODD input, scenarios containing all 

the queried attributes are included in the database. For instance, if “particulates” are included 

in the ODD input but completely absent from the database (as indicated in red in Figure 12), 

complete coverage of the ODD cannot be achieved. At a more granular level, if a parent 

attribute such as “natural illumination” is part of the input ODD, tag-based coverage analysis 

can help determine whether all its corresponding child attributes of “daytime,” “night time,” and 

“low ambient lighting”, are also represented in the database. As highlighted in red in Figure 

12, the child attribute “low ambient lighting” is missing from the query results, indicating a gap 

in coverage. By leveraging tag-based analysis, the SCDB can systematically identify and 

address such gaps, ensuring that it provides full coverage of ODD requirements. 

 

 
Figure 12: Coverage of ODD attributes by scenarios within the database. 

Beyond identifying missing attributes, this granular assessment can gauge if each level within 

the taxonomy is well-represented. For example, consider an ODD that is designed to handle 

all intensities of rainfall. The database may contain 1,000 scenarios labelled with “rainfall”, 

indicating that wet weather conditions are well-documented. However, a deeper analysis 
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might reveal that only 12 of those scenarios specifically describe “violent rainfall” intensity, 

which is a critical factor for testing vehicle performance in extreme weather conditions. Without 

this level of analysis, the database may appear comprehensive at a high level but could lack 

specific scenarios, which may be crucial for ensuring safety in real-world applications. 

By systematically analysing the distribution of tags, we can take corrective measures, such as 

curating new scenarios to address gaps to achieve a well-balanced database that can provide 

complete coverage of an ODD input. 

The following tag-based coverage metrics evaluate not only the coverage of all tags but also 

the distribution of tags across various types of scenarios. Before introducing this tag-based 

coverage metric, we need to distinguish scenarios from Scenario Categories (SCs) [32]. Here, 

a scenario refers to a quantitative description of the relevant characteristics of the ego vehicle, 

its activities and/or goals, its static environment, and its dynamic environment. In contrast, an 

SC refers to a qualitative description of the ego vehicle, its activities and/or goals, its static 

environment, and its dynamic environment. For example, the SC “cut in” comprises all possible 

cut-in scenarios. Scenarios may further be enriched with tags, e.g., a scenario belonging to 

the SC “cut in” may have the tag “actor at left” to indicate that there is an actor at the left side 

of the ego vehicle that prevents the ego vehicle from changing lane to the left.  

Let ℒ denote a set of tags and let 𝒞 denote a set of SCs. Note that the set of tags should be 

based on the relevant aspects of an ODD, whereas the set of SCs could be based on the 

coverage type II metrics presented later. For the tag-based coverage, we make use of the 

function 𝑁(𝐿, 𝐶), which returns the number of scenarios that belong to SC 𝐶 and contain the 

tag 𝐿. Continuing the previous example, in case we have 10 cut-in scenarios with an actor at 

the left of the ego vehicle, we would have 𝑁(Actor at left, Cut-in) = 10. The tag-based 

coverage metric is defined as follows: 

CoverageTag =
1

𝑛|ℒ||𝒞|
∑∑min(𝑛,𝑁(𝐿, 𝐶))

𝐶∈𝒞𝐿∈ℒ

, 

where 𝑛 ∈ ℤ+ and |⋅| denotes the cardinality, e.g., |ℒ| equals the number of (distinct) tags. In 

case CoverageTag(1) = 1, each tag is associated to at least one scenario of each SC.  

For this coverage metric, three choices need to be made:  

1. The SCs belonging to 𝒞. The SCs should cover the ODD. The set of SCs could be 

based on relevant literature [97, 98], though we suggest using other coverage metrics 

to justify that the set of SCs is complete. As mentioned before, the metrics for coverage 

type II may be used. 

2. The tags belonging to ℒ. The tags should follow from the ODD description. When 

defining the ODD in accordance with the ISO 34503 standard [99], the corresponding 

tags listed in the ISO 34504 standard [100] may be used. 

3. The required number of tags per SC, 𝑛. Minimally, 𝑛 = 1, but to achieve more accurate 

statistics, if may be required to choose a higher value for 𝑛. To determine 𝑛, other 

metrics be used, e.g., see [70, 45, 71, 72, 101]. 
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To obtain more accurate statistics of the scenarios belonging to an SC, it may be desired to 

have at least several scenarios of each SC with a certain tag. In that case, a larger value of 𝑛 

may be chosen. 

Note that different tag-based coverage metrics can be defined if different sets of tags are 

considered. For example, one may choose to calculate the tag-based coverage with ℒ 

consisting of tags related to environmental conditions, such as weather and lighting conditions, 

and with another set of tags consisting of scenery attributes, such as different types of roads. 

5.5.1.2 Time-based coverage 

The time-based coverage metric answers the question of whether all timestamp in the data is 

covered by one or more scenarios. Let 𝒯 denote the set of all timestamps in the data set. For 

the time-based coverage, we introduce the function 𝑀(𝑡), which returns the number of 

scenarios at time 𝑡. Note that it may be possible that scenarios happen in parallel, e.g., a 

leading vehicle decelerating and another vehicle overtaking the ego vehicle. The time-based 

coverage metric is defined as follows: 

CoverageT(𝑛) =
1

𝑛|𝒯|
∑min(𝑛,𝑀(𝑡))

𝑡∈𝒯 

, 

with 𝑛 ∈ ℤ+. In case CoverageT(1) = 1, all timestamps in the data are covered by at least one 

scenario. To account for the number of scenarios that can occur in parallel, one can increase 

the value of 𝑛. 

5.5.1.3 Actor-based coverage 

The actor-based coverage metric answers the question of whether every relevant actor is 

covered by at least one scenario. Let 𝒜 denote the set of relevant actors. Here, the term 

“relevant” could be defined using some conditions. For example, 𝒜 could contain all actors 

that are at some point in time within a certain distance of the ego vehicle. Alternatively, 𝒜 

could contain all emergency vehicles in the data set, etc. Let ℬ denote the set of actors that 

are part of at least one scenario. Then, the actor-based coverage metric is defined as follows: 

CoverageA(𝒜) =
|𝒜 ∩ ℬ|

|𝒜|
. 

5.5.1.4 Actor-over-time-based coverage 

Achieving CoverageA(𝒜) = 1 means that all actors of the set 𝒜 are part of at least one 

scenario. However, it does not consider the temporal aspect of when these actors are part of 

a scenario. For example, it could be the case that an actor is near the ego vehicle – and thus 

part of 𝒜 – but only part of a scenario once this vehicle is far away. To accommodate the time 

aspect, we introduce the fourth coverage metric; the actor-over-time-based coverage. 

Let 𝒯𝑎 denote the set of timestamps at which the actor 𝑎 ∈ 𝒜 satisfies the conditions that 

makes this actor part of 𝒜. Furthermore, let 𝐾(𝑎, 𝑡) be the number of scenarios at time 𝑡 that 

contain actor 𝑎. Then, the actor-over-time-based coverage is defined as follows: 
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CoverageAT(𝒜) =
1

|𝒜|
∑

1

|𝒯𝑎|
∑ min(1, 𝐾(𝑎, 𝑡))

𝑡∈𝒯𝑎𝑎∈𝒜

. 

5.5.2 Parameter space coverage 

The following method is based on [102, 103]. The proposed method (see Figure 13) is based 

on an innovative statistical approach designed to optimize the selection of testing scenarios 

for autonomous vehicle safety. Initially, high-dimensional scenario data—composed of 

numerous continuous variables—is transformed into a latent space using a Factor Variational 

Autoencoder (FVAE) [104]. This transformation is enhanced with cyclic KL annealing [105] 

and principal component analysis to achieve nearly independent, Gaussian-distributed latent 

variables. In this latent space, the continuous data is partitioned into equiprobable [106] 

subspaces by computing the cumulative distribution functions of each marginal variable. This 

discretization enables the selection of a representative subset of samples that faithfully 

capture the overall statistical characteristics of the original data, thereby dramatically reducing 

the number of tests required. 

 
Figure 13: The main steps for determining the parameter space coverage. 

A major challenge in this process is managing the complexity inherent in real-world data. The 

high number of variables — and their frequent interdependencies — complicates the 

discretization of the scenario space. This complexity can lead either to an oversimplification 

of the data or to an exponential increase in the number of required samples, thereby 

compromising the faithful representation of diverse scenarios and posing significant 

challenges to maintaining both statistical rigor and computational feasibility. 

Finally, the method includes a mechanism to identify gaps or under-represented regions within 

the latent space. When such areas are detected, synthetic scenarios are generated using the 

same deep generative model, ensuring comprehensive coverage of the scenario space. This 

step not only guarantees that critical cases are not overlooked but also further enhances the 

efficiency of the testing process.1 

 
1 This solution is a Vedecom-MOOVE4.0 project outcome brought as background to SUNRISE.  
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Observations from the method reveal that the latent space transformation effectively captures 

the essential features of high-dimensional driving data while drastically reducing the number 

of required test scenarios. The equiprobable partitioning ensures that each subspace is 

statistically representative, and the subsequent selection process reliably identifies both 

typical and critical cases. Notably, the approach’s ability to detect gaps in the scenario space 

— and to fill these with synthetic data — demonstrates a robust mechanism for maintaining 

comprehensive coverage. In conclusion, the proposed approach offers a cost-effective and 

scalable solution for autonomous driving safety testing. It leverages advanced deep learning 

techniques and rigorous statistical methods to improve testing precision, reduce 

computational overhead, and ultimately enhance the reliability of safety evaluations for ADSs. 

  

 
VEDECOM's Intellectual Property. 
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6 APPLICATION 

This chapter presents demonstrations of the metrics that have been developed in SUNRISE 

and presented in Chapter 5. This chapter adheres to the structure established in Chapter 5.  

6.1 Testing purpose 

As outlined in Section 5.1, three distinct metrics have been developed for testing purposes: 

scenario relevance, scenario criticality, and scenario complexity. This section provides 

examples of how these metrics are applied. 

6.1.1 Scenario relevance 

This section demonstrates the application of the scenario quality metric defined in Section 

5.1.1. The process involves four key steps: scenario selection, risk estimation, acceptance 

criteria definition, and relevance evaluation. These steps help identify and prioritize high-risk 

scenarios from a scenario database, ensuring that tests are both relevant and effective in 

enhancing system safety and robustness.  

Step 1 - Scenario Selection 

The first step in applying the metric is to select a subset of scenarios from the available SCDB 

for a specific ODD. For this study, data from the Safety Pool SCDB are used, which contains 

over 200,000 predefined driving scenarios for testing and validation, including 3,096 that are 

freely available. To ensure relevance to safety testing, the selection focuses on junction 

scenarios (intersections and roundabouts), which are known for their complexity and high 

accident occurrence. Within the freely available dataset, 1,065 scenarios fall into this category, 

forming the primary dataset for risk assessment. 

Step 2 - Risk Estimation 

With the ODD scenarios defined, the next step is to assess the risk of each scenario in the 

dataset. This is done using the risk estimation approach from [78], which quantifies risk based 

on CPs. Examples of CPs are: 

• 𝐶𝑃17: Intersecting planned trajectories of TPs 

• CP90: Strong braking manoeuvre of ego/non-ego-TP 

• CP118: Road weather 

• 𝐶𝑃134: Occluded vehicle 

A sample of CP IDs by associated risk is provided in Table 3.  

To estimate the overall risk of a scenario, it is first necessary to identify which CPs are present. 

This process is automated through a script that analyses scenario definitions, extracting 

relevant information based on common keywords and tags. As a result, 65 out of 166 CPs 

were identified in the Safety Pool SCDB, while the remaining CPs could not be detected due 

to incomplete scenario descriptions. 
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Table 3: Sample table of Criticality Phenomena (CPs) by associated risk. 

CP identifier 𝐑𝐢𝐬𝐤(CP,Accident,Severity ≥ 𝟏|OD) × 𝟏𝟎𝟗 

CP17 455.34 

CP23 68.47 

CP26 178.93 

CP40 77.31 

CP41 456.55 

CP48 203.11 

CP53 7.76 

CP90 475.70 

CP118 199.86 

CP134 67.70 

 

Since some scenarios contain multiple CPs, their individual risks must be aggregated to 

determine the overall scenario risk. This is achieved using Eq. (1), which combines the risk 

contributions of all identified CPs within each scenario. An example applied to a scenario 

would be as follows: 

Risk(scenario1) = 1 −∏(1 − Risk(CP,Accident,Severity ≥ 1|OD)𝑖)

𝑛

𝑖=1

 

= 1 − ((1 − RiskCP26) ⋅ (1 − RiskCP40) ⋅ (1 − RiskCP41) ⋅ (1 − RiskCP54)) 

= (1 − (1 − 178.93 ⋅ 10−9) ⋅ (1077.31 ⋅ 10−9) ⋅ (1 − 456.55 ⋅ 10−9)

⋅ (1 − 7.76 ⋅ 10−9)) 

= 7.21 ⋅ 10−7 

Step 3 - Acceptance Criteria Definition 

With a risk value estimated for each scenario, the next step is to establish an acceptance 

criterion to filter out lower-risk scenarios, ensuring that the selection process prioritizes the 

most critical scenarios for testing. To achieve this, a risk threshold is defined – for instance, 

selecting only scenarios with a risk value higher than the mean plus one standard deviation of 

the ODD scenario risk distribution. 

When this threshold is applied to the selected ODD scenarios, the data set is significantly 

reduced, narrowing it down from approximately 1,000 scenarios to 200 scenarios, as shown 

in Figure 14. 
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Figure 14: Risk of ODD scenarios, where the colour indicates whether the acceptance criteria are 

met. 

From this refined set, a test scenario sample is randomly selected, ensuring that the final 

selection consists of scenarios that meet the predefined risk criteria while maintaining 

variability within the dataset. 

Step 4 - Relevance Evaluation 

The final step is to assess the relevance of the test scenario sample by comparing it to the 

reference distribution, which consists of the scenarios that meet the acceptance criteria. This 

is done using a Mann-Whitney U test [107], a non-parametric statistical test suitable for 

comparing distributions that do not necessarily follow a normal distribution. 

The null hypothesis is defined as: the mean risk of the test sample is lower than that of the 

reference distribution. To determine whether the selected scenarios are relevant, the p-value 

is used as the evaluation metric. A p-value lower than 5 % leads to the rejection of the null 

hypothesis, confirming that the test sample accurately reflects the most critical scenarios. 

To analyse the robustness of this method, experiments were conducted using different sample 

sizes. The results, summarized in Table 4, show that most test samples were rejected due to 

having a p-value greater than 5 %, indicating that they were not sufficiently relevant. However, 

a subset of test samples, highlighted in bold in Table 4, passed the evaluation and are 

considered strong candidates for proving ground testing. 

Figure 15 illustrates the test results for the sample size of 20 and sample 5, which passed the 

evaluation, while Figure 16 shows the results for the sample size of 10 and sample 1, which 

did not pass. 
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Table 4: Test sample p-value results. 

Sample size Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

10 0.5444 0.3196 0.0267 0.2515 0.1707 

20 0.0784 0.8846 0.0551 0.0987 0.0310 

30 0.3487 0.3087 0.9179 0.0429 0.8968 

 

 
Figure 15: Scenarios for which ODD acceptance criteria are met, with in red the 20 scenarios that are 

selected with sample 5. 

 
Figure 16: Similar as Figure 15, but with a sample size of 10 and sample 1. 
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6.1.2 Scenario criticality 

This section discusses the application of the methodology described in Section 5.1.2 for the 

assessment of concrete scenario criticality within a logical scenario parameter space, upon 

execution of the scenarios. The logical scenario of a darting out pedestrian as described in 

UC1.3 of SUNRISE was used for the demonstration of the method. The logical scenario is 

parameterized using three key parameters. Interesting scenarios are generated in a two-step 

approach:  

Step 1: to generate scenarios that are critical for each subsystem independently based on the 

different metrics’ combinations for each SUT (leading to the use of different οbjective 

functions, namely the ego speed, the pedestrian speed, and the distance between ego and 

pedestrian when the latter starts crossing. Specifically, the following ranges of the three 

parameters were used: 

• Ego speed: [30, 50] km/h 

• Pedestrian speed: [0.5, 2] m/s 

• Distance ego-pedestrian: [10, 50] m 

Two SUTs were considered in this application: the driving SUT (end-to-end system) and the 

collective perception SUT. Criticality metrics from the respective SUT driving and the 

perception classes were selected. Specifically, the TTC as criticality metric for the driving SUT 

and the minimum detected distance of detection (DD) of the pedestrian as criticality metric for 

the perception. On the scenario level, the minimum TTC (TTCmin) and the maximum DD 

(DDmax) from all frames were used. The pass/fail thresholds were defined as follows: 

• TTCmin threshold 𝛾ttc = 1 s  

• DDmax threshold 𝛾dd = 0.4 ⋅ (
𝑣ego

10⁄ )
2

+ 4 (this threshold considers a simple formula of 

distance to break as a function of the vehicle speed) 

The application is divided into three steps described in detail below. 

Step 1: Random sampling within logical scenario parameter space 

In this step, a random set of concrete scenarios from the logical scenario space are allocated 

and executed in simulation, and the criticality metric of interest (TTCmin or DDmax) is logged. 

This dataset is used for the pre-training of a Gaussian Process (GP) algorithm to predict the 

outcome of concrete scenarios as pass/fail. 

Step 2: Online training and oversampling close to boundary 

In this step, the pre-trained GP is used for the generation of samples close to the boundary 

with the aim to learn better the difficult boundary space where the model confidence is low. 

Each sampled scenario is executed, and the criticality metric is calculated. The GP is retrained 

after every 50 new samples until convergence. Figure 17 illustrates the random sampling from 

step 1 and the boundary sampling from step 2 along with the pass/fail boundary for the end-

to-end driving SUT (TTCmin) 
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Figure 17: Random and boundary sampling from steps 1 and 2, respectively. 

For different SUTs, the scenarios deemed as critical depend on the used metric and reflect 

the criticality with respect to a specific SUT. This is illustrated in Figure 18, where the pass 

and fail regions for the driving SUT and the CP SUT are superimposed. For better 

visualization, a 2D slice of the 3D parameter space is shown with given ego speed 𝑣𝑒𝑔𝑜 =

42 𝑘𝑚/ℎ.  The region where the outcome differs between the two SUTs is denoted with pink 

colour. As observed, this region is significant and highlights the need for assessment of 

criticality with a variety of metrics covering different SUTs of interest. Figure 18 also shows 

that the samples selected during step 2 fall indeed close to the respective boundary for both 

cases. This also demonstrates that uncertainty and scenario selection for further testing is 

also SUT dependent. 
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Figure 18: Superimposed pass and fail regions for driving and CP SUTs for a 2D slice with given 

𝑣ego = 42 km/h. Green area denotes region where both systems pass, red area denotes region where 

both systems fail and pink area denotes region where driving SUT fails and CP SUT passes. Pass/fail 

boundaries for driving SUT (black) and CP SUT (blue) and boundary samples generated by the GP 

algorithm in step 2. 

Step 3: Critical scenario assessment and parameter space coverage 

After the two-step training phase, the GP algorithm is queried on the whole logical scenario 

parameter space to provide an estimate of the pass/fail regions and boundary along with 

confidence levels of its estimations. This permits the characterisation of the logical scenario 

space, the identification of critical scenarios, as well as the identification of scenarios that need 

to be further investigated on hybrid simulation or testing grounds (scenarios with low 

confidence level). Figure 19 demonstrates that the additional boundary oversampling (step 2) 

enhances the estimation confidence of the GP algorithm (from 92.1% to 96.3%), hence 

increases the coverage of the logical scenario parameter space. Orange regions denote low 

prediction confidence by the GP algorithm and are tagged as uncertain. The uncertain region 

is shown to be reduced after boundary oversampling. 
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Figure 19: Coverage of logical scenario parameter space for a 2D slice with given 𝑣ped = 0.9 m/s. 

Prediction of pass (green) and fail (red) regions using the GP algorithm after (a) random sampling and 

(b) random sampling and boundary oversampling. Orange regions denote uncertain scenarios. 

The above results demonstrate that our method can be used for the characterization of 

scenario criticality and the discovery of critical scenarios. Moreover, they illustrate that 

scenario criticality analysis needs to consider a specific SUTs and depends strongly on the 

selected metrics.  

 

6.1.3 Scenario complexity 

In the context of SAF, the Static Scenario Complexity Metric (𝐶scene) defined in Section 4.1.3 

has been applied to a representative set of scenarios from SAF Use Case 2.1: Traffic Jam 

Assist (TJA). 

All the scenarios provided were written in OpenSCENARIO format and represent typical traffic 

situations relevant for TJA system validation. The selected scenarios cover a variety of driving 

events, including: 

• Speed adaptations due to traffic or speed limits 

• Lane keeping and entering curves 

• Target vehicle cut-in and cut-out manoeuvres 

• Emergency braking situations 

• Pedestrian crossings 

• Stationary obstacles on the lane 

For the complexity assessment, each scenario file was processed to extract the necessary 

input factors for the static complexity calculation. The input features extracted for each 

scenario can be described as follows: 

 

• Environmental Conditions: Weather, illumination, and road surface conditions, as defined 

in the OpenSCENARIO <Environment> section. 
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• Traffic Participant Configuration and Types: Number and type of active traffic participants, 

limited to ego and one target actor for consistency with UC 2.1’s actor configuration. 

<Entities> section of the scenario file provides the total number and categories of the 

traffic participant information. 

• Ego Speed: The ego vehicle’s initial speed was determined from the initial scenario 

actions. 

• Initial Longitudinal Distance: The initial distance between the ego and target actors was 

extracted from the scenario’s <Init> block, using their respective LanePosition’s 

coordinates. 

The bar chart in Figure 20 shows the complexity level of the SAF UC 2.1 scenarios with the 

default parameter values. 

 

Figure 20: Static Scenario Complexity Comparison of UC 2.1 TJA Scenarios. 

According to the resulting bar chart, scenarios without a target vehicle entity generally exhibit 

lower static complexity scores (e.g., adapting to new speed limit generally exhibit lower static 

complexity scores compared to scenarios involving dynamic interactions with target vehicles). 

This trend reflects the influence of traffic participant type and behaviour on the overall 

complexity calculation, where scenarios with moving vehicle targets introduce higher levels of 

interaction potential. Consequently, scenarios with only stationary objects or vulnerable road 

users such as pedestrians tend to receive lower 𝐶scene values, highlighting their relatively 

reduced situational and operational complexity in the context of Traffic Jam Assist system 

validation. 

6.2 Scenario description 

This section follows the same structure as Section 5.2, meaning that first the application of the 

guidelines of Section 5.2.1 are discussed. Next, the application of a consistent taxonomy is 

addressed. This section ends with a demonstration of the scenario description completeness 

metric. 
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6.2.1 Scenario description guidelines 

In this section, we will utilize the developed guidelines to assess the completeness of Use 

Case 2.1, which focuses on testing a "Traffic Jam AD System" [108]. We examine how the 

guidelines from Section 5.2.1 apply to Test 2-A. The primary goal of Test 2-A is to evaluate 

whether the system can adjust to a new speed limit that is lower than the current speed of the 

AD vehicle while maintaining a safe distance from the vehicle ahead. 

In the initial step, we verify whether the given scenario conforms to the specified scenario 

format. The scenario is provided as an OpenSCENARIO XML file, which must adhere to the 

XML schema defined by this standard. OpenSCENARIO supplies an .xsd file that outlines the 

required schema. The scenario file for this use case is based on OpenSCENARIO version 1-

1. Upon checking, it has been confirmed that the file complies with the schema set forth by 

ASAM. Consequently, the first guideline has been successfully met. 

The second guideline stipulates that the scenario's content must be internally plausible. For 

instance, the initial positions of all vehicles should be realistic. Initially, the given scenario had 

identical starting positions for all vehicles, which would result in inaccurate starting conditions. 

However, within the scenario itself, these initial positions are correctly established for the 

initialization and are consistent with the use case description. Additionally, both the positions 

and speeds of all actors are coherent within the scenario description. The speed reduction 

specified in the scenario file does not conflict with any other provided information. Therefore, 

this guideline is satisfied, as all information within the scenario is plausible. 

The third guideline mandates that the use case specifies a minimum level of information 

required within the scenario. For this use case, the following details must be included, which 

were derived from the test description [108]: 

• an ego vehicle; 

• the initial speed of the ego vehicle; 

• the adapted speed of the ego vehicle, which is lower than its initial speed; 

• a target vehicle positioned in front of the ego vehicle; 

• a target vehicle with an initial speed identical to that of the ego vehicle; and 

• a target vehicle with an adapted speed matching that of the ego vehicle, which is lower 

than its initial speed 

These requirements represent the essential information needed to fulfil the use case 

description. Upon reviewing the scenario file, all necessary information is present, and the 

specified values align with those outlined in the use case. Consequently, the third guideline is 

adhered to. 

In conclusion, the scenario file for Use Case 2.1 Test 2-A successfully adheres to all outlined 

guidelines, demonstrating its completeness as a test case in relation to the use case 

description. Initially, the scenario file was verified to conform to the OpenSCENARIO XML 

schema, ensuring structural integrity and compliance with ASAM standards. Subsequently, 

the scenario's content was evaluated for internal plausibility, confirming that all initial positions 

and speed settings of vehicles were realistic and consistent with the use case requirements. 
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Finally, a thorough examination confirmed that all essential information specified by the third 

guideline was present within the scenario file. 

6.2.2 Consistent use of taxonomy 

To ensure compliance with a shared vocabulary, the scenarios within the SCDB must align 

with the governing taxonomy adopted by the database. For example, if the SCDB follows the 

taxonomy defined in ISO 34503, this implies adherence to a standardized structure for 

representing ODD attributes. The consistent use of shared keywords and attribute hierarchies 

is essential for maintaining semantic coherence, interoperability, and traceability across 

scenarios contributed by diverse stakeholders. 

Compliance with this common terminology can be assessed at any level of abstraction, 

depending on the level at which a scenario is described. For example, consider a logical 

scenario described in SDL (Scenario Description Language) Level 2 format [109, 110] as seen 

in Figure 21, which includes structured definitions of elements such as environmental 

conditions, road layout and traffic participants. When scenario descriptions deviate from the 

defined taxonomy – ISO 34503 in this case, several challenges arise. Most notably, it 

introduces inconsistencies in terminology that deviate from the standardized structure followed 

by the rest of the SCDB. This misalignment can significantly impact downstream processes 

such as search, filtering, automated tagging, and coverage analysis, leading to incomplete or 

misleading results. 

Take, for example, the scenery description shown in Figure 21, where the attribute "Puddle" 

is assigned under the parent category "Drivable area surface". According to the ISO 34503 

taxonomy, "Standing water" is the appropriate terminology for a phenomenon that occurs 

when water accumulates due to a depression in the drivable area. Moreover, this attribute is 

typically categorized under a different branch of the taxonomy – “Drivable area induced 

surface conditions”. Such discrepancies not only hinder semantic interoperability but also 

prevent accurate mapping between scenario content of the database and ODD requirements 

as defined in a search criterion. 

It is important to emphasize that the taxonomy applies not just at the leaf node level but across 

the entire hierarchical structure, from high-level categories down to specific attribute values. 

This would also allow for consistency across units. Ensuring correct placement and naming of 

attributes throughout this hierarchy is essential for maintaining a logically sound and 

searchable SCDB. This, in turn, directly supports the SAF by enabling traceability between 

scenario descriptions and system operational limits, enabling trustworthy safety claims. 

In conclusion, both the language used in scenario descriptions and the taxonomy to which 

they conform must be consistent across the SCDB. This dual consistency enables traceable, 

structured scenario descriptions that support reliable search and analysis. It also allows for 

the systematic addition of new attributes through structured extensions, avoids naming 

mismatches for existing attributes, and ensures that no branch of the taxonomy is 

inadvertently omitted. This foundational consistency is essential for enabling robust coverage 

analysis as described later and for supporting the SAF through transparent alignment between 

scenario description data and the system’s operational boundaries. 
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SCENERY ELEMENTS: 

DO: Map - roads and junctions network [Network1] as:  

Junctions: None 

Roads: 

R1:  

START 

Road type [Motorway] as [R1] with zone as [N/A] AND speed limit of [30] in an [Urban] 

environment with  

Number of lanes [3] as [R1.L1, R1.L2, R1.L3]  

Road traffic direction [Right-handed]  

Lane type [Traffic lane]   

Lane markings [Broken line]  

Horizontal road geometry [Straight]  

Vertical road geometry [Level plane] 

Drivable area surface [Puddle]  

Length [9000 to 11000] AND Lane width [3.4 to 3.7]  

END 

Figure 21: Snippet of a logical scenario in SDL Level 2 format [109, 110]. 

6.2.3 Scenario description completeness 

Completeness evaluation of SAF UC 2.1 Traffic Jam Assist Scenarios in AVL SCENIUS 

SCDB 

The application of the Scenario Completeness Evaluation in AVL Scenius SCDB begins at the 

scenario import phase. 

Initially, the extension of the scenario file is verified (.xosc), followed by an XSD Schema 

validation. An XML Schema Definition (.xsd) file is an is an XML-based grammar that precisely 

describes the shape, data types, and rules an XML document must follow, so computers can 

validate, exchange, and auto-process that data with confidence.  

AVL Scenius uses the official XSD Schema from ASAM to validate the structure and grammar 

of each imported OpenSCENARIO file. If the imported scenario file does not comply with the 

XSD Schema, the invalid elements are highlighted, and the scenario upload is rejected, as 

illustrated in Figure 22. This validation step represents the initial assessment of the core 

completeness criterion for the Scenario Artifact. All UC 2.1 scenarios are fully compliant with 

the ASAM-provided XSD Schema. 
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Figure 22: Invalid OpenSCENARIO file import in AVL SCENIUS (as an example). 

The second core completeness metric, Environment Definition, is also assessed during the 

scenario import process. If the referenced environment file does not exist in the SCDB, the 

user is prompted at this stage to upload the missing environment file. The corresponding error 

message displayed to the user is shown in Figure 23. The import process cannot proceed until 

the required environment file is uploaded to the database. In the case of UC 2.1 scenarios, all 

relevant OpenDRIVE files were included, and this completeness criterion was successfully 

fulfilled. 

 

Figure 23: Environment not found error in the database. 

The final core completeness criterion, Scenario Parameters, is assessed once the upload 

process is complete. If no parameters are declared within the OpenSCENARIO file, the user 

is notified that the scenario is marked as "Incomplete" due to missing parameters.  

All SAF UC 2.1 scenarios include parameter declarations, and thus no such warning has been 

issued. AVL Scenius SCDB also supports the display of metadata and illustrative media, as 

illustrated in Figure 24. Scenario descriptions and illustrative media can either be included 

directly in the uploaded scenario package or added through the user interface after the initial 

upload. For the UC 2.1 scenarios, both descriptions and images are available within 

deliverable D7.1 [108] and they can be used within Scenius SCDB. 
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Figure 24: SAF UC 2.1 Scenarios on AVL Scenius Scenario Data Manager. 

AVL Scenius assesses the presence of taxonomy by verifying whether a valid taxonomy 

definition file has been supplied alongside the scenario. If no taxonomy file is provided, the 

user can assign taxonomy elements from those predefined within the SCDB, as shown in 

Figure 25.  

The UC 2.1 scenarios did not include a taxonomy file; however, they provided a clear ODD 

definition. Using this ODD information, elements from the master ontology can be assigned 

directly to the scenarios. 
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Figure 25: AVL Scenius ODD Manager – Ontology. 

The presence of an end condition is assessed by verifying whether a StopTrigger element has 

been defined as a child element of the Storyboard element within the OpenSCENARIO file. 

An example snippet illustrating a valid StopTrigger definition is provided below: 

 

    <StopTrigger> 

      <ConditionGroup> 

        <Condition delay="0.0" conditionEdge="rising" name="Time limit"> 

          <ByValueCondition> 

            <SimulationTimeCondition rule="greaterThan" value="60"/> 

          </ByValueCondition> 

        </Condition> 

      </ConditionGroup> 

    </StopTrigger> 

In the UC 2.1 scenarios, the StopTrigger elements were properly defined within the Storyboard 

element, thereby successfully meeting the End Condition check. 

AVL Scenius SCDB verifies that each referenced actor is explicitly defined and categorized 

according to established entity types. If the actor definition is not made correctly the user will 

be prompted to choose an actor which was defined in the Scenius SCDB – Figure 26. For the 

SAF UC 2.1 scenarios, all actors have been explicitly defined, thus meeting this completeness 

criterion successfully. 
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Figure 26: User is prompted to choose actors for the scenario. 

The completeness evaluation applied to SAF UC 2.1 scenarios within AVL Scenius confirmed 

that all scenarios meet both the core and descriptive completeness criteria. Each scenario 

successfully passed checks related to scenario artifact validity, environment definition 

availability, parameter declarations, taxonomy classification, presence of descriptive 

information and illustrative media, explicit end condition definitions, and actor entities. 

Consequently, all SAF UC 2.1 scenarios are classified as “complete” within the Scenius 

SCDB. 

6.3 Scenario exposure 

To illustrate the use of KDE and NF to estimate the scenario exposure at parameter level, the 

HighD data set was selected for the experiment due to its extensive coverage of over 40,000 

km of naturalistic driving data and its high accuracy. This data includes trajectories of cars and 

trucks at six different locations on German motorways, captured using drone video footage. 

To generate scenario data, each of the more than 100,000 vehicles in the data set is treated 

as an ego vehicle once. This process creates over 100,000 smaller data sets, each containing 

a single ego vehicle and its relative trajectory data, assuming the ego vehicle can see all 

surrounding vehicles within a 100-meter radius. Each smaller data set ends when the ego 

vehicle is 100 meters from its final position to prevent the sudden disappearance of vehicles 

from the drone's view. Consequently, vehicles with trajectories shorter than 100 meters are 

excluded as ego vehicles. This process resulted in 109,986 data sets with a single ego vehicle. 

For illustrating the estimation of the exposure, parameter values of cut-in scenarios are used. 

In total, 2,992 cut-in scenarios are found in the data. Four different parameters are considered: 

1. The initial speed of the ego vehicle when the other vehicle initiates the cut-in manoeuvre.  

2. At the same moment, the speed of the vehicle that performs the cut-in manoeuvre. 
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3. The average lateral speed of the vehicle performing the cut-in manoeuvre during the cut-in 

manoeuvre. 

4. The distance between the ego vehicle and the vehicle performing the cut-in manoeuvre 

when the cut-in manoeuvre starts. 

KDE and NF have been used to estimate the joint distribution of these four parameters. Figure 

27 shows the result of the estimation of the PDF. Note that this figure shows the marginal 

distributions based on the estimate joint distribution. The bars show the histograms of the 

data, and the lines denote the estimated distributions. For the first three parameters, the 

difference between KDE and NF is not substantial. However, for the fourth parameter, KDE 

appears to overestimate the probability density near the edges. This is a common 

phenomenon with KDE. This problem is less pronounced for NF.  

 

Figure 27: Four parameters of cut-in scenarios. The histograms display the original data, while solid 

lines represent the marginal probability distributions of the estimated PDF. Green lines show KDE 

estimations, and red lines show NF estimations. 

6.4 (Dis)similarity of scenarios 

Section 5.4 distinguishes between abstract-level, logical-level, and concrete-level scenario 

descriptions. This section applies the metrics proposed in Section 5.4, organized according to 

these scenario-level descriptions. 
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6.4.1 Abstract-level similarity 

A collection of 600 abstract scenarios have been developed to demonstrate and evaluate the 

effectiveness of our semantic similarity metrics. The creation process followed a structured, 

multi-stage methodology: 

1. Scenario Generation Using Language Models: We used large language models like 

ChatGPT to create new scenarios based on a set of initial examples. These new scenarios 

follow a structured format (SDL) [109] and are designed to be consistent with the original 

examples in terms of content and style. A similar two-step scenario generation process – 

starting from abstract descriptions and refining them using language models is described 

in [111]. 

2. Ontology Alignment: To ensure conceptual coherence and relevance, we imposed 

constraints based on the SUNRISE ontology, guiding the structure and content of the 

scenarios toward a unified semantic framework. 

3. Cleaning and Validation: The resulting dataset was rigorously reviewed through automated 

filters and manual inspection to eliminate redundancy, ensure clarity, and maintain high-

quality linguistic and semantic standards. 

Once finalized, the scenarios were encoded into numerical embeddings using transformer-

based language models (SBERT). These numerical embeddings used to compute pairwise 

semantic similarity across all scenarios. The similarity results were visualized using a heatmap 

(Figure 28), and the derived similarity matrix also served as a distance metric for clustering. 

The scenarios were then reordered based on clustering outcomes, making it easier to visually 

identify clusters of conceptually similar scenarios. 

 

Figure 28: Similarity matrix between randomly distributed scenarios (left) and sorted scenarios (right). 

In addition to sentence-level semantic analysis, each scenario is also associated with a list of 

ontology-based tags derived from the SUNRISE ontology, representing high-level conceptual 

elements present in the scene. These tag sets allow for a complementary similarity analysis 

using the Jaccard index, which measures the degree of overlap between two tag sets based 

on the ratio of their intersection to their union. By calculating pairwise Jaccard similarity scores 

across all 600 scenarios, we generated a second similarity matrix that captures conceptual 

alignment based purely on shared ontological classes. Comparing this tag-based similarity 
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matrix with the SBERT-based semantic similarity matrix revealed a strong positive correlation 

(Pearson r = 0.71), indicating that semantic embedding models align closely with structured 

ontological representations. This correlation is visualized in Figure 29, which highlights the 

consistency between sentence-level meaning and ontology-based abstraction across the 

dataset. 

 

Figure 29: The correlation between SBERT and Jaccard similarities. 

 

6.4.2 Logical-level similarity 

In the evaluation of logical-level scenario similarity, scenario parameters can be systematically 

classified into three primary categories: dynamic, scenery, and environmental. This 

categorization aligns with the structured approach found in SDL formats, particularly for 

scripted scenarios, where each actor’s behaviour is explicitly defined through sequenced 

manoeuvre phases. Among these, dynamic parameters – such as speed, acceleration, 

relative distance, and manoeuvre type – carry the highest semantic importance, as they 

determine the behavioural trajectory, risk evolution, and functional objective of the test. In 

contrast, scenery, and environmental parameters (e.g., road geometry, weather conditions) 

set the operational context but have a secondary influence on the core functional behaviour. 

The reliability of PSS as a similarity metric depends heavily on structural alignment between 

the scenarios. The metric is most meaningful when the scenarios share the same manoeuvre 

sequence structure – i.e., a similar number of phases and manoeuvre types (e.g., cut-in vs. 

cut-in, or overtaking vs. overtaking). Comparing scenarios across fundamentally different 

behaviours (such as a merging manoeuvre versus a pedestrian crossing) is less informative, 

as the internal semantics and testing objectives differ. In such cases, numerical overlaps in 

parameters might be misleading, failing to reflect true functional similarity. 

For a practical example with PSS Calculation, we consider two logical SDL2 scenarios (Figure 

30): 

• An on-road vehicle other than the ego vehicle (labelled V2 in Figure 30) approaches 

speed range during Phase 1: ([55, 70]) km/h 

Suppose we wish to compare it to a second scenario where: 
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• The approach speed is ([50, 60]) km/h 

Overlap = [55,60],  Union = [50,70], 

PSSspeed =
5

20
= 0.25. 

 

Figure 30: Logical scenario description (in SDL Level 2 format [109, 110])  used as an example for 

the similarity metric. The parameter of interest is highlighted. 

Thus, even though the scenarios share similar a structure (Figure 30), the dynamic PSS 

between them is approximately 0.25, indicating a moderate level of similarity but highlighting 

clear differences in dynamic risk and timing. 

 

6.4.3 Concrete-level similarity 

Two different approaches are presented. The first approach focusses on the comparisons of 

the trajectories of the scenario actors, while the second approach calculates the similarity 

between two scenarios based on the most critical scene. 

# Dynamic elements 

INITIAL: Ego [V1] in [R1.L1] AND on-road vehicle [V2] in [R1.L2] at [RSR] relative position 

 

WHEN: Ego [V1] is [Going ahead] in [R1.L1] 

 

DO: On-road vehicle [V2] maneuver as: 

  Phase 1: [V2] Drive_Towards [-, 55 to 70, 2 to 3] [V1: 5 to 15, RSR] 

  Phase 2: [V2] Drive_Away [-, 55 to 65, -1 to -2] [V1: 0 to 10, FSR] 

    WHILE: [V2] relative location to [V1] is [Within] a [Longitudinal] margin of [6.5 to 7.5] 

  Phase 3: [V2] LaneChgLeft_CutIn [-, 55 to 65, -1 to -1] [V1: 0 to 10, FSR] 

  Phase 4: [V2] Drive_Away [-, 45 to 55, -0.5 to 0.5] [V1: -10 to 0, F] 

 

END: [V2] in [R1.L1] at [F] relative position to [V1] [Not within] a [Longitudinal] margin of [80 to 100] OR [V1] [Collide] with 

[V2] 

 

# Scenery elements 

DO: Map-roads and junctions network [Network 1] as: 

Junctions: N/A 

Roads: 

R1: START 

  Road type [Motorway] as [R1] with zone as [N/A] AND speed limit of [70] in [Urban] environment 

    - Number of lanes [3] as [R1.L1, R1.L2, R1.L3] 

    - Road traffic direction [Left] with lane type [Traffic lane] 

    - Lane markings [Broken lines] 

    - Road surface type [Uniform] with surface condition [Dry] AND surface feature [N/A] 

    - Horizontal road geometry [Straight] with curvature radius of [N/A] 

    - Vertical road geometry [Level plane] 

    - Transverse road geometry [Undivided] with [No] roadside feature 

    - Roadway edge feature [Line markers] 

    - Length [200 to 400] AND lane width [4 to 4.2] 

END 

 

# Environment elements 

DO: Environment [Env 1] as: 

  - Wind [0 to 5] 

  - Clouds [0 to 1] 

  - Particulates [None] 

  - Precipitation [None] 

  - Time [6:00 to 7:00] 

  - Illumination [Daylight] with [Sun] as light source at [30 to 35] elevation angle AND [FSR] position # Ego vehicle initial 

position 

  - Connectivity [None] 
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6.4.3.1 Concrete-level similarity based on trajectories 

In this step, a set of nine logical-level scenarios was selected from the Safety Pool scenario 

database. These scenarios each involve two interacting entities and were categorized into 

three manoeuvre classes: Lane Change Left (LCL), Lane Change Right (LCR), and Stop 

(STP), with three scenarios per category. All scenarios were encoded in OpenSCENARIO 

format and executed using the Esmini OpenSCENARIO simulation engine, which was used 

to generate fully instantiated concrete trajectories for each actor over time. 

The resulting spatiotemporal trajectories were then visualized and are shown in Figure 31. To 

quantify similarity between scenarios at the concrete level, we applied two trajectory-based 

metrics introduced in Section 5.4.3.1: DTW and the Hausdorff distance. These metrics were 

used to compute pairwise similarity between the nine scenarios, producing two corresponding 

similarity matrices, which are presented in Figure 32. 

 
Figure 31: Spatial trajectories (x, y) of nine scenarios, coloured using a timestamp-based colormap to 

visualize temporal evolution across each manoeuvre. 

As expected, both DTW and Hausdorff metrics yielded higher similarity values among 

scenarios within the same manoeuvre class, and lower similarity across different classes. This 

confirms that trajectory-based similarity effectively captures the behavioural structure of 

manoeuvre-specific categories. Notably, within the Stop (STP) group, one scenario – STP3, 

which takes place on an extended road segment – exhibited distinct trajectory characteristics. 

The DTW metric was particularly sensitive to this variation, successfully distinguishing STP3 

from the other Stop scenarios based on timing and spatial dynamics, even though they share 

the same manoeuvre label. 
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Figure 32: Similarity matrices computed using Dynamic Time Warping (DTW) and Hausdorff distance 

for the nine scenario trajectories. Higher similarity scores are observed within manoeuvre groups 

(LCL, LCR, STP), while inter-group comparisons yield lower similarity. 

6.4.3.2 Concrete-level similarity based on most critical scene 

The following example is based on the work in [112].The chosen application example is a 

scenario dataset of 1,000 scenarios, generated using an optimization methodology [113]. The 

optimization problem is aimed at discovering scenarios which are highly “unexpected” for the 

ego vehicle in its interaction with the chosen target vehicle. The purpose of using dissimilarity 

metrics for this application example is to extract a representative set of scenarios from this 

scenario dataset which score high on the “unexpectedness” metric but are also different from 

each other. These scenarios can then be used as a representative set for early testing of 

different versions of the ADS algorithms. The diversity requirement is unmet when dissimilarity 

metrics are not used, as the scenarios scoring highest on unexpectedness metric may be very 

similar to each other. This is because the optimization engine, upon finding a good scenario, 

will try minor variations around that scenario to find even ‘better’ scenarios. 

The setup is shown in Figure 33. The ego vehicle and a target vehicle drive on fixed path(s) 

but can have trajectory variations, e.g., speed. Two other vehicles are in the scenario, which 

may directly or indirectly affect unexpectedness for the ego vehicle. These vehicles can have 

varied paths, as shown in the figure, as well as trajectory variations. Unexpectedness for the 

ego vehicle may occur for example due to target vehicle being obstructed from the ego vehicle 

view by Vehicle 3 or Vehicle 4, or if the target vehicle suddenly accelerates or brakes while 

crossing the intersection. 
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Figure 33: The problem space for the optimization problem. The ego and target vehicle have fixed 

paths with trajectory parameters. Vehicle 3 and Vehicle 4 have discrete set of possible paths as well 

as trajectory parameters. 

Using the dissimilarity metric, clusters of similar scenarios are identified, after which the 

scenario with the best objective score in each cluster are extracted. Twelve clusters are 

identified based on discrete features only, while an additional sixteen clusters are identified by 

additionally using continuous features. Figure 34 shows how scenarios, within a cluster based 

on discrete features, is further clustered based on the continuous features. Figure 35 shows 

the scenarios with the highest objective score within their respective clusters. 

 

 

Figure 34: Sub-clustering of scenarios based on continuous features within one cluster as extracted 

based on discrete features. Design A, B, and C are the scenarios with the highest objective score in 

their respective clusters. 
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Figure 35: Three dissimilar scenarios which share similar discrete features but have different 

continuous features in the most safety-critical scene. 

6.5 Coverage 

In Section 5.5, two different approaches are presented for measuring coverage: coverage of 

an ODD by scenarios and coverage of the parameter space of a logical scenario. This section 

presents applications of these metrics. 

6.5.1 ODD coverage by scenarios 

This section describes applications of the tag-based coverage, time-based coverage, actor-

based coverage, and actor-over-time-based coverage. 

6.5.1.1 Tag-based coverage 

With a structured taxonomy in place and shared keywords consistently used across the SCDB, 

it becomes possible to perform systematic tag-based coverage analysis. This analysis helps 

identify whether the SCDB comprehensively represents relevant attributes across the ODD 

and behaviour specifications or if there are gaps or underrepresented conditions. 

Let’s assume that the SCDB contains 1,000 scenarios and follows the ISO 34503 taxonomy 

which provides a standardized hierarchical structure to represent ODD attributes.  While a 

high-level view might suggest that rainfall is sufficiently represented across the dataset, a 

deeper analysis, by drilling down into lower levels of the taxonomy, reveals that no scenarios 

capture "Extreme rain" as an attribute. Such a gap could have significant implications for safety 

validation if the automated system is intended to operate under such conditions. 

Table 5 presents an evaluation of weather condition coverage based on this structured, using 

a tag-based approach. While a high-level view might suggest that rainfall is sufficiently 

represented across the dataset, a deeper analysis, by drilling down into lower levels of the 

taxonomy, reveals that no scenarios capture "Extreme rain" as an attribute. Such a gap could 
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have significant implications for safety validation if the automated system is intended to 

operate under such conditions. 

Table 5: Tag-based coverage analysis of weather conditions. 

Weather Attribute Number of scenarios tagged Coverage in SCDB 

Ambient air temperature 1000 100% 

Wind 1000 100% 

No wind 80 8% 

Low wind 543 54% 

Medium wind 287 28% 

High wind 90 9% 

Rainfall 670 67% 

Rainfall type 20 2% 

Dynamic 7 <1% 

Convective 11 1% 

Orographic 2 <1% 

Rainfall intensity 670 67% 

No rain 62 6% 

Light rain 385 38% 

Medium rain 223 22% 

Extreme rain 0 0% 

Snowfall 30 3% 

No snow 0 0% 

Light snow 3 <1% 

Moderate snow 26 2% 

Heavy snow 1 <1% 

 

Moreover, this tag-based coverage analysis can be extended to directly compare against a 

specified ODD definition. By aligning the tag set used in the SCDB with the attributes listed in 

the ODD input, one can assess whether the database can cover the system's operational 

requirements. For example, if the input ODD definition includes the ability to operate in 

conditions with extreme rainfall, the coverage analysis clearly highlights where new scenario 

development is necessary. It helps safety engineers understand the conditions that the system 

may not be exposed to in virtual testing and helps scenario developers understand exactly 

where the SCDB needs to be extended to meet ODD requirements. Ultimately, this method 

enhances the transparency and accountability of the SAF by offering quantifiable insight into 

how well the SCDB aligns with the operational boundaries of the system under test. 
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To also illustrate the tag coverage metric Coveragetag, a different experiment has been set up. 

For this, the same data as for the application of the exposure metrics (Section 6.3) has been 

utilized. Table 6 presents the 10 scenario categories considered in this study, summarizing 

the activities of the ego vehicle and the main actors, who are essential for the scenario to 

occur. Other actors may also participate in the scenario, such as a vehicle overtaking the ego 

vehicle in the leading vehicle cruising scenario. The scenarios are automatically extracted 

based on the activities of the ego vehicle and the main actors, following the approach outlined 

in. Table 6 also shows the number of scenarios found for each scenario category. 

Table 6: Description of the 10 scenario categories that are considered for the application of coverage 

metrics. 

Symbol  Name Count 

𝐶1  Leading vehicle cruising 102,308 

𝐶2  Leading vehicle accelerating 22,296 

𝐶3  Leading vehicle decelerating 20,351 

𝐶4  Approaching slower vehicle 5,052 

𝐶5  Cut-in in front of ego vehicle 2,992 

𝐶6  Cut-out in front of ego vehicle 3,069 

𝐶7  Changing lane with vehicle behind 2,156 

𝐶8  Merging into an occupied lane 819 

𝐶9  Ego vehicle overtaking vehicle 38,147 

𝐶10  Vehicle overtaking ego vehicle 40,307 

 

Eighteen tags are considered for coverage, as shown in Table 7 and Table 8. The first two 

tags correspond to the vehicle types in the HighD data set. Tags 𝐿3 to 𝐿10 refer to a vehicle's 

initial position relative to the ego vehicle. Tags 𝐿11 and 𝐿12 indicate if an actor is much slower 

or faster than the ego vehicle. The other tags describe longitudinal (𝐿13 to 𝐿15) and lateral (𝐿16 

to 𝐿18) activities of surrounding vehicles. For example, tag 𝐿1 is used once for 5 cars around 

the ego vehicle. 

Table 7 and Table 8 list the scenarios containing each tag. Some tags, such as tag in 

scenarios 𝐶1, 𝐶2, 𝐶3, and 𝐶6, are inherently included. Figure 36 shows tag-based coverage 

resulting from Table 7 and Table 8, revealing how coverage varies with different tag sets. For 

any tag set, CoverageTag(10) = 1, meaning each tag appears in at least 10 scenarios per 

scenario category. When considering tags 𝐿1, 𝐿2, and 𝐿10 to 𝐿14, CoverageTag(100) = 1. As 𝑛 

increases, Coverage
Tag
(𝑛) decreases. Low counts for SCs 𝐶7 and 𝐶8 lead to fewer 

occurrences of their tags. 
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Table 7: Counts of tags per scenario category with the corresponding scenario categories listed in 

Table 6. This table continuous with Table 8. 

Symbol  Tag 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

𝐿1  Car 102,111 22,292 20,341 5,050 

𝐿2  Truck 81,475 19,406 17,454 4,234 

𝐿3  Same lane in front 102,308 22,296 20,351 5,052 

𝐿4  Same lane rear 37,281 11,248 14,377 2,386 

𝐿5  In front left lane 70,385 17,664 15,934 3,860 

𝐿6  In front right lane 49,139 9,190 8,871 2,443 

𝐿7  At side left lane 4,852 2,052 1,552 228 

𝐿8  At side right lane 4,850 1,284 1,162 201 

𝐿9  Rear left lane 32,294 12,730 13,183 2,243 

𝐿10  Rear right lane 31,462 8,052 8,741 1,777 

𝐿11  Slower (Δ𝑣 < −5 m/s) 54,750 13,873 14,138 4,021 

𝐿12  Faster (Δ𝑣 > 5 m/s) 41,061 9,032 8,046 1,798 

𝐿13  Cruising 102,308 22,296 20,351 5,043 

𝐿14  Accelerating 57,081 22,296 7,652 2,554 

𝐿15  Decelerating 58,144 9,107 20,351 3,419 

𝐿16  Keeping lane 102,308 22,296 20,351 5,052 

𝐿17  Changing lane left 6,771 1,405 1,759 384 

𝐿18  Changing lane right 4,154 1,127 982 339 
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Table 8: Continuation of Table 7. 

Symbol  𝑪𝟓 𝑪𝟔 𝑪𝟕 𝑪𝟖 𝑪𝟗 𝑪𝟏𝟎 

𝐿1  2,992 3,067 2,147 819 37,996 40,305 

𝐿2  2,273 2,624 1,915 734 34,652 31,999 

𝐿3  1,188 3,069 834 480 29,295 29,171 

𝐿4  1,339 1,597 1,006 351 23,666 24,913 

𝐿5  1,857 2,377 980 578 37,850 14,773 

𝐿6  2,208 1,187 820 476 12,388 32,625 

𝐿7  161 205 40 17 870 1,151 

𝐿8  166 95 44 20 1,216 12,83 

𝐿9  1,245 1,750 1,205 366 24,979 12,760 

𝐿10 1,387 807 721 275 11,063 37,005 

𝐿11  1,348 2,369 1,528 591 35,107 7,480 

𝐿12  1,831 957 931 403 8,124 37,569 

𝐿13  2,964 3,051 2,142 816 37,935 39,660 

𝐿14  1,610 1,481 1,260 516 21,270 24,039 

𝐿15  1,794 1,833 1,287 607 21,132 24,804 

𝐿16  2,992 3,068 2,156 819 38,147 40,307 

𝐿17  2,090 2,101 32 13 2,545 2,668 

𝐿18  987 1,073 12 15 1,794 1,741 

 

 

Figure 36: Results of the tag-based coverage. 
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6.5.1.2 Time-based coverage 

To calculate time-based coverage, we treat each dataset's time instants with an ego vehicle 

separately, then combine the results. Figure 37 shows that around 75 % of these instances 

are covered by at least one scenario, leaving 25 % uncovered. This gap needs investigation 

to check for missing important scenario categories. In this 25 %, there might be no actor fitting 

any of the actors described by the scenario categories or no other actor present. This is 

confirmed when we add the SC "ego vehicle has no leading vehicle", as this would result in 

Coverage𝑇(1) = 1. 

 

Figure 37: Results of the time-based coverage. 

6.5.1.3 Actor-based coverage  

Figure 38 illustrates actor-based coverage for different actor sets. Imagine a box around the 

ego vehicle; 𝒜 includes all actors within this box at any time. By varying the box size, different 

values of CoverageA(𝒜) are shown. For ℬ (actors part of a scenario), only main actors that 

are necessary for the scenario annotation are considered. For example, for a scenario of SC 

“leading vehicle cruising”, only the ego vehicle and the leading vehicle are part of ℬ, while all 

other surrounding vehicle are not. Including all scenario actors would make actor-based 

coverage practically similar to time-based coverage. 

Considering only actors ahead of the ego vehicle in its lane (blue solid line), CoverageA(𝒜) =

1 for vehicles within 10 m. In other cases, the coverage is lower. Further investigation is 

needed to understand why some nearby actors are not main actors, even if they are within 15 

m. In this study, non-main actors are often vehicles in front of the vehicle the ego follows, 

particularly in traffic jams. 

Changing the width of the box around A substantially drops CoverageA(𝒜). Vehicles in 

adjacent lanes are considered only if overtaking or being overtaken by the ego vehicle (𝐶9 and 

𝐶10). Vehicles two lanes away are not considered main actors for any SC, resulting in lower 

green lines compared to red lines. Extending the box towards the back of the ego vehicle also 

lowers actor-based coverage, explained by only one SC (𝐶8) considering a main actor behind 

the ego for the entire scenario duration. 
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Figure 38: Results of the actor-based coverage. For the actor set 𝒜, every actor is considered that is 

at some point in time within a certain longitudinal distance of the ego vehicle, varying from 10 m to 

100 m (x-axis), and within a lateral distance, varying between 1.5 m (blue), 5.0 m (red), and 8.5 m 

(green). For the solid lines, 𝒜 only contain actors in front, while for the dashed lines, 𝒜 also contain 

rear actors within the specified longitudinal distance.  

6.5.1.4 Actor-over-time-based coverage 

Figure 39 shows actor-over-time-based coverage, similar to Figure 38. For actors in the same 

lane ahead of the ego vehicle (blue lines), results are almost identical. This suggests these 

actors are main participants when within the imaginary box. Other lines indicate coverage is 

slightly lower, meaning that relevant actors are not covered for the entire time they are within 

the box's boundaries. 

 

Figure 39: Results of the actor-over-time-based coverage. See Figure 38 for a further explanation. 

6.5.2 Parameter space coverage 

To illustrate the parameter space coverage, we base our study on the ADScene dataset, 

processed through multiple steps to extract structured driving scenarios from raw sensor data 

(cf. Figure 40). The pipeline includes filtering anomalies (e.g., ghost objects), sensor fusion 

(e.g., ID unification, speed calculation), and trajectory predictions (e.g., lane changes, as in 

[114]). From this, a high-level data model is built to represent road actors, infrastructure, ego 

dynamics, and context. 
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We define expert-based rules using high-level parameters (HLPs) to trigger scenario 

identification, leading to a structured scenario catalogue. From this catalogue, we selected 

three real-world scenarios to evaluate our method. 

For each scenario, a primary variable set defines its core structure, and two additional 

variables measure how the dimensionality affects coverage. These are captured at a key 

moment (e.g., braking, lane change) to assess variable completeness and scenario 

description quality. 

The following scenarios are considered: 

• UC1 – "Closest In-Path Vehicle (CIPV) (Brakes" (Figure 41): Sudden braking by the 

leading vehicle. Main metrics include ego speed, obstacle distance, deceleration, and 

time to collision. Despite a low recall (40 %), the scenario appears frequently. 

Supplementary variables (e.g., lateral position) help assess information gaps in a broader 

space. 

• UC2 – "Ego Lane Change" (Figure 42): Lateral manoeuvre without obstacle. Main 

variables: ego speed, lateral speed, manoeuvre duration. With 83 % recall and many 

instances, this scenario serves as a strong benchmark. 

• UC3 – "Lane Change to Overtake" (Figure 43): Overtaking manoeuvre with focus on time 

to collision and relative distances. Although recall is low (45 %) and data is limited, it is 

key for testing robustness under rare conditions. 

 

 
Figure 40: Data workflow of ADScene. 

 
Figure 41: Scenario "CIPV brakes" (UC1). 
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Figure 42: Scenario "ego change lane" (UC2). 

 
Figure 43: Scenario "ego change lane to overtake" (UC3). 

 
Our approach assumes a Gaussian latent space. We validate this using the Mardia test [115], 

assessing skewness and kurtosis for each use case, see Table 9. High p-values across all 

UCs suggest alignment with a 2D Gaussian model. This supports the relevance of our method, 

especially for UC1 and UC2 with larger sample sizes. UC3’s smaller dataset also passes the 

test, though with lower statistical power. 

Table 9: Results of Mardia test for assessing normality of the latent space for each scenario. 

Scenario  p-value for skewness p-value for Kurtosis 

1 0.99 0.58 

2 0.99 0.67 

3 0.99 0.76 

 
We estimate space coverage based on different sample sizes, see Table 10. As expected, 

coverage decreases as required sample size increases. UC3 yields the lowest rates due to its 

small sample and low recall. Between UC1 and UC2, both with similar sample sizes, UC2 

shows higher completeness, which aligns with its better recall and more consistent data. 

Table 10: Coverage rate of scenarios in percentage. 

Prescribed sample size Scenario 1 Scenario 2 Scenario 3 

900 100 100 67.51 

1,600 98.94 99.94 63.62 

2,500 97.24 98.52 58.52 

3,600 96.89 97.25 48.22 

4,900 95.47 96.08 32.94 

6,400 91.80 94.48 32.94 

8,100 86.60 91.96 27.38 
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A key finding appears at 𝑛 = 8,100, where UC1 and UC2 show a 5% difference in coverage. 

To confirm, we downsample to 5,000 samples. Results remain consistent: UC2 retains better 

coverage across all tested values of, see Figure 44. 

 

Figure 44: Comparison of coverage rate between UC1 and UC2 for different number of samples after 

sample reduction. 

We also test coverage after removing supplementary variables, see Figure 45. Fewer 

variables reduce latent dimensionality, leading to higher coverage – this validates our 

method’s sensitivity to the effective complexity of the scenario description. 

 

Figure 45: Impact of variable removal on scenario coverage rates. 

In conclusion, our method provides a coherent framework to evaluate scenario completeness 

under varying conditions: data size, variable count, and recall. It offers a mathematically 
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grounded tool to assess gaps in scenario datasets, supporting strategic planning for data 

collection in real-world applications. 

It also holds promise for extension to raw time-series, infrastructure data, and integration into 

adaptive ODD-specific scenario generation workflows. Ultimately, this contributes to more 

cost-efficient and representative testing campaigns.  
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7 CONCLUSIONS AND FUTURE DIRECTIONS 

Summary of key findings 

This deliverable introduced a comprehensive framework of quality metrics to evaluate the 

contents of Scenario Databases (SCDBs), which are essential components of the Safety 

Assurance Framework (SAF) developed within the SUNRISE project. These metrics were 

organized into several categories – testing purpose, scenario description (incl. 

completeness), scenario exposure, (dis)similarity, coverage, and general SCDB metrics 

(see Chapter 3). They were grounded in an extensive literature review (Chapter 4) and further 

developed within SUNRISE (Chapter 5), providing practical and scalable methods for 

quantifying scenario quality across multiple dimensions. These metrics were also validated 

and demonstrated through partner applications using real-world datasets and SCDBs 

(Chapter 6), supporting their usability and effectiveness in a variety of test and validation 

contexts. 

Alignment with project goals 

The metrics presented in this deliverable are central to achieving the SUNRISE project’s goal 

of enabling safe, efficient, and harmonised testing and validation of Connected, 

Cooperative, and Automated Mobility (CCAM) systems. Specifically, they serve as core 

enablers for the Safety Assurance Framework (SAF) (see Chapter 2), which aims to 

consolidate diverse validation approaches under a unified methodology. By providing 

standardised and traceable quality indicators, these metrics enhance the ability to evaluate 

the robustness and representativeness of test scenarios and their alignment with Operational 

Design Domains (ODDs). 

Actionable outcomes 

The deliverable identifies several key actionable outcomes for project stakeholders: 

• The scenario relevance and criticality metrics (Chapter 5.1) allow testers to identify and 

prioritise high-risk or safety-critical scenarios, ensuring that validation focuses on the 

most impactful driving situations. 

• The scenario description and completeness metrics (Chapter 5.2) verify that scenarios 

meet required detail levels for simulation and validation. 

• The exposure metrics (Section 5.3) enable quantification of exposure for risk estimations. 

• The scenario (dis)similarity metrics (Chapter 5.4) enable database refinement by 

removing redundant scenarios and ensuring a diverse and representative scenario set.  

• The coverage metrics (Chapter 5.5), including tag-based, parameter-space, and actor-

over-time coverage, support strategic scenario selection, scenario generation, and gap 

analysis. 

These outcomes are ready for integration into SCDB tools and can be adopted by partners 

and stakeholders as standard procedures for database assessment and improvement. 
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Linkage to other project tasks 

Deliverable D5.3 is closely connected with several other SUNRISE deliverables and tasks: 

• Deliverable D2.3 (Definition of SAF) incorporates many of the metrics defined here into 

the broader SAF safety argumentation and workflow (see Chapter 2). 

• Deliverable D3.4 [1] (Subspace Creation Methodology) leverages the coverage and 

similarity metrics introduced in this document for scenario generation and scenario space 

exploration (Chapter 5.4 and 5.5). 

• Deliverable D5.1 [2] (Requirements for Data Framework and SCDB content) is 

substantiated by this work, as the metrics in D5.3 offer a quantitative basis to assess 

compliance with SCDB requirements, particularly the metrics outlined in Section 5.2 of 

D5.3. 

Stakeholder relevance 

The metrics developed in this deliverable are valuable to a wide range of internal and external 

stakeholders: 

• SCDB owners and developers can apply the metrics from Chapter 4 and 5 to validate 

and improve database content, ensuring fitness for use across a wide variety of 

applications (Chapter 6). 

• Tool developers can integrate the metrics into SCDB interfaces, APIs, and GUIs, 

enhancing transparency and traceability of scenario quality assessments. 

• Test engineers and validation authorities benefit from metrics that enable rigorous, 

repeatable, and explainable scenario-based testing aligned with regulatory frameworks 

and real-world requirements. 

• Policy makers, regulators, and independent assessors, like consumer testing 

organisations, can use the metrics to establish objective criteria for type approval 

processes and future standardisation efforts. 

Future work 

Building on the findings of this deliverable, several directions for future research and 

development are proposed: 

• Standardisation of the defined metrics across the European CCAM validation landscape, 

facilitating international harmonisation and interoperability. 

• Integration of metrics into automated scenario generation tools and AI-based test 

pipelines, improving the efficiency and coverage of test scenario sets. 

• Establishing appropriate pass/fail thresholds for the proposed metrics. While current 

metrics enable comparisons between different scenarios or sets of scenarios, defining 

specific thresholds for compliance with requirements poses a challenge. For example, 

provided that 100 % coverage may be unfeasible, determining the minimum acceptable 

percentage that should be reached is essential. Future research could aim to identify 

these thresholds and ensure they align with compliance standards. 
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Key Recommendations 

Based on the deliverable’s findings, the following recommendations are proposed: 

• SCDB stakeholders should apply the provided metrics as a baseline for quality control, 

with emphasis on the scenario description metrics. 

• SUNRISE partners should align SCDB content evaluation with the SAF workflows by 

using exposure, relevance, similarity, and coverage metrics to guide scenario selection 

and testing. 

• Tool developers are encouraged to implement the metrics in analysis dashboards to 

assist test engineers in selecting balanced and effective scenario sets. 

• Standardization organisations and regulators should consider formal adoption of these 

metrics as part of future CCAM validation protocols, contributing to a coherent and 

harmonised European testing ecosystem. 

Closing Remarks 

This deliverable represents a significant step toward formalising the quality evaluation of 

SCDB contents, a critical pillar in the development of a European Safety Assurance 

Framework (SAF) for CCAM systems. By providing stakeholders with explainable, 

quantifiable, and actionable metrics, SUNRISE contributes to safety assurance in the context 

of automated mobility. 
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