

ccam-sunrise-project.eu/

D6.3
First European Test Case Library

Project short name
SUNRISE

Project full name
Safety assUraNce fRamework for connected, automated mobIlity
SystEms

Horizon Research and Innovation Actions | Project No.
101069573
Call HORIZON-CL5-2021-D6-01

https://ccam-sunrise-project.eu/

D6.3 First European Test Case Library | 2

Authors

Role Name

Main authors Yavar Taghipour Azar, Juan Diego Ortega (Vicomtech)

Contributing authors Marcos Nieto (Vicomtech)

Jobst Beckmann (IKA)

Jose Diaz Mendoza (TNO)

Eren Mungan (AVL)

Doha Khtatba, Chaima TLILI (Vedecom)

Quality Control

 Name Organisation Date

Peer review 1 Stefan de Vries IDIADA 09/07/2025

Peer review 2 Raul Ferreira CAF 10/07/2025

Version history

Version Date Author Summary of changes

0.1 19/05/2025 Marcos Nieto First draft of document structure and
content

0.2 17/07/2025 All First revised version with content in all
sections

0.3 22/07/2025 Yavar
Taghipour, Juan
Diego Ortega,
Marcos Nieto

Final revised version

Dissemination level Public (PU) - fully open

Work package WP6: Data framework design and usage definition

Deliverable number D6.3: First European Test Case Library

Deliverable responsible Marcos Nieto, Vicomtech

Status - Version Final – V1.0

Submission date 23/07/2025

Keywords
SUNRISE Data Framework, Federation layer,
Scenario Databases

D6.3 First European Test Case Library | 3

1.0 23/07/2025 Yavar
Taghipour, Juan
Diego Ortega,
Marcos Nieto

Final version

Legal disclaimer

Funded by the European Union. Views and opinions expressed are however those of the

author(s) only and do not necessarily reflect those of the European Union or the European

Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European

Union nor the granting authority can be held responsible for them.

Copyright © SUNRISE Consortium, 2025.

D6.3 First European Test Case Library | 4

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 9

1 INTRODUCTION ... 11

1.1 Project introduction ... 11

1.2 Purpose of deliverable .. 13

1.3 Intended audience .. 13

1.4 Deliverable structure and relation to other parts of project .. 14

1.5 Reformulation of deliverable nomenclature ... 15

2 SUNRISE DATA FRAMEWORK ... 17

2.1 Introduction ... 17

2.2 Architecture .. 18

2.3 Implementation and deployment ... 20

2.3.1 Back-end components .. 21

2.3.1.1 Auth Management ... 21

2.3.1.2 Data Management ... 24

2.3.1.3 Query Manager.. 25

2.3.1.4 SCDB Management .. 26

2.3.2 Front-end components ... 29

2.3.2.1 User Management ... 29

2.3.2.2 SCDB Management .. 31

2.3.2.3 Search UI ... 33

2.3.2.4 Dashboard ... 35

3 SCENARIO DATABASES ... 37

3.1 Introduction ... 37

3.1.1 Adscene.. 37

D6.3 First European Test Case Library | 5

3.1.2 SafetyPool .. 37

3.1.3 Scenario Center ... 38

3.1.4 Scenius ... 39

3.1.5 Streetwise ... 40

3.2 Demo SCDB ... 42

3.2.1 Objectives of the Demo SCDB within SUNRISE ... 42

3.2.2 Architecture Summary .. 43

3.2.3 Backend Architecture ... 43

3.2.3.1 Cognito Authentication .. 44

3.2.3.2 DynamoDB .. 45

3.2.3.3 S3 Storage ... 46

3.2.3.4 Lambda Functions ... 46

3.2.3.5 API Gateway .. 47

3.2.4 DEMO SCDB Frontend .. 48

3.2.5 Scenario Generation .. 49

4 CONCLUSIONS .. 50

5 REFERENCES .. 52

ANNEX 1. ONBOARDING TO SUNRISE DF ... 53

ANNEX 2. SCENARIO DATABASE API REQUIREMENTS ... 60

ANNEX 3. DATA MODELS FOR SUNRISE DF TABLES... 72

D6.3 First European Test Case Library | 6

LIST OF FIGURES

Figure 1: Safety Assurance Framework stakeholders .. 12

Figure 2: Workplan of the SUNRISE Project .. 13

Figure 3: Position of the SUNRISE Data Framework within the SAF ... 17

Figure 4 : SUNRISE DF Architecture .. 19

Figure 5: SUNRISE Data Framework cloud infrastructure deployment .. 21

Figure 6: SUNRISE DF User Pool viewed in AWS Cognito console .. 22

Figure 7: SUNRISE DF defined user groups to handle different permissions within the platform 23

Figure 8: SUNRISE DF tables created in AWS DynamoDB ... 25

Figure 9: Sequence diagram depicting the OAuth2 steps within the SUNRISE architecture 28

Figure 10: SUNRISE DF Sign-up and Login pages .. 30

Figure 11 : SUNRISE DF landing page .. 30

Figure 12: User profile page with option to request change role as SCDB Host 31

Figure 13 : Interface in SUNRISE for SCDB hosts to add and configure new databases 31

Figure 14: SUNRISE DF form to onboard a new SCDB ... 32

Figure 15 : SCDB management for a regular user ... 32

Figure 16: Scenario query based on ODD, Behavior and Road Users .. 33

Figure 17 : Query results page ... 34

Figure 18 : Scenario information page .. 34

Figure 19 : Download page and internal structure of compressed file ... 35

Figure 20 : Overview of metadata and quality metrics for Demo-SCDB .. 36

Figure 21 : Re-simulation of a scenario.center scenario. ... 39

Figure 22: AWS Resource Architecture and Service Connections for the Demo SCDB 44

Figure 23: Architecture of the lambda function in the AWS CDK ... 47

Figure 24 : SUNRISE Data Framework onboarding process. .. 54

Figure 25: SUNRISE User Registration Screen.. 57

Figure 26: Requesting SCDB Host Role ... 58

Figure 27: Manage SCDB dropdown in user menu and SCDB Configuration 58

Figure 28: Tabs related to add new SCDB ... 59

LIST OF TABLES

Table 1: OpenSCENARIO package content ... 70

Table 2 : Data model for SCDB table .. 72

Table 3: Data model for UserSCDBConnection table ... 73

Table 4: Data model for QueryManagerQuery table ... 74

Table 5 : Data model for UserNotification table .. 75

D6.3 First European Test Case Library | 7

ABBREVIATIONS AND ACRONYMS

Abbreviation Meaning

AD Automated Driving

ADS Automated Driving System

AEB Autonomous Emergency Braking

API Application Programming Interface

AWS Amazon Web Services

CCAM Connected, Cooperative, and Automated Mobility

CDK Cloud Development Kit

CLI Command Line Interface

CORS Cross-Origin Resource Sharing

COTSATO Concretizing Test Scenarios and Associating Test Objectives

DF Data Framework

IAM Identity and Access Management

ISMR In-Service Monitoring and Reporting

JWT Json Web Token

NATM New Assessment/Test Method for Automated Driving

ODD Operational Design Domain

ODR OpenDRIVE forma

OEM Original Equipment Manufacturer

OSC OpenSCENARIO

OSG OpenScenario Graph

PDF Probability Density Function

RBAC Role-Based Access Control

SAF Safety Assurance Framework

SCDB Scenario Database

D6.3 First European Test Case Library | 8

SDL Scenario Description Language

SOTIF Safety Of the Intended Functionality

SUNRISE Safety assUraNce fRamework for connected, automated
mobIlity SystEms

SUT System Under Test

UC Use Case

UI User Interface

UUID Universal Unique Identifier

V&V Verification and Validation

WP Work Package

D6.3 First European Test Case Library | 9

EXECUTIVE SUMMARY

Safety assurance of Cooperative, Connected, and Automated Mobility (CCAM) systems is a

crucial factor for their successful adoption in society, yet it remains a significant challenge. It

is generally acknowledged that for higher levels of automation, the validation of these systems

by conventional test methods would be infeasible. Furthermore, certification initiatives

worldwide struggle to define a harmonized safety assurance approach enabling massive

deployment of CCAM systems.

The SUNRISE project develops and demonstrates a CCAM Safety Assurance Framework

(SAF). The overall objective of the SUNRISE project is to accelerate the large-scale and safe

deployment of CCAM systems. In alignment with international twin projects and initiatives, the

project aims to achieve this objective by providing a SAF consisting of three main components:

a Method, a Toolchain and a Data Framework. The Method is established to support the SAF

safety argumentation, and includes procedures for scenario selection, sub-space creation,

dynamic allocation to test instances and a variety of metrics and rating procedures. The

Toolchain contains a set of tools for safety assessment of CCAM systems, including

approaches for virtual, hybrid and physical testing. The Data Framework provides online

access, connection and harmonization of external Scenario Databases (SCDBs), allowing its

users to perform query-based extraction of safety relevant scenarios, allocation of selected

scenarios to a variety of test environments, and reception of the test results.

This deliverable presents the SUNRISE Data Framework (DF) which is a cloud application

implemented in the context of WP6 activities, specially T6.4 about European Test Case

Library. The SUNRISE DF implements and operates as a federation layer that provides

centralised and harmonised access to SCDBs.

The SUNRISE DF is a supporting element for the Store and Query & Concertise blocks of the

SAF. Its application is highly recommended (though not mandatory to follow the SAF

methodology) since it provides the following benefits:

1. It offers a centralized single portal to access all connected SCDBs through

standardised interfaces

2. It guarantees data governance through user authentication and authorisation

3. It enhances and simplifies compliance with scenario querying processes

4. It centralises scenario retrieval for a variety of stakeholders (e.g., certifying entities,

CCAM developers, test services, etc.)

Several components have been implemented which compose the SUNRISE DF, including a

set of back-end functions (management, deployment, API services), and front-end user

interfaces (Query UI, Dashboard, User access). Details on these components and other

aspects of the standardised input and output interfaces of the SUNRISE DF with the SCDBs

are provided in deliverable "D6.2 Define and development of SCDB input and output

standards and interfaces".

D6.3 First European Test Case Library | 10

As the SUNRISE DF operates as a federation layer, it does not offer storage services, so all

scenario content remains at the SCDB repositories, controlled by SCDB owners. The

SUNRISE DF is open for onboarding new SCDBs which desire to offer their scenarios.

Procedures to onboard a user and a SCDB are described in Annex 1 Onboarding. In

technical terms, the onboarding essentially implies first to register in SUNRISE DF and then

provide an API which is prepared at the SCDB side compliant with the API requirements

described in Annex 2 of this deliverable.

As part of the documentation and the onboarding process, a SUNRISE Demo SCDB has been

also built, as an example mock-up scenario database that fully complies with the API

requirements and the SUNRISE SAF. The Demo SCDB is reported also in this deliverable

and will serve as an example software documentation that interested SCDB owners can use

as a reference to onboard the SUNRISE DF.

This document also summarizes the current status (as of July 2025) of SCDBs already

onboarded into the SUNRISE DF, namely StreetWise, SafetyPool, Scenario.center, Adscene,

and Scenius.

The SUNRISE DF is deployed in a cloud service and can be accessed at ccam-sunrise.eu

D6.3 First European Test Case Library | 11

1 INTRODUCTION

1.1 Project introduction

Safety assurance of Connected, Cooperative, and Automated Mobility (CCAM) systems is a

crucial factor for their successful adoption in society, yet it remains a significant challenge.

CCAM systems need to demonstrate reliability in all driving scenarios, requiring robust safety

argumentation. It is acknowledged that for higher levels of automation, the validation of these

systems by means of real test-drives would be infeasible. In consequence, a carefully

designed mixture of physical and virtual testing has emerged as a promising approach, with

the virtual part bearing more significant weight for cost efficiency reasons.

Worldwide, several initiatives have started to develop test and assessment methods for

Automated Driving (AD) functions. These initiatives already transitioned from conventional

validation to a scenario-based approach and combine different test instances (physical and

virtual testing) to avoid the million-mile issue.

The initiatives mentioned above, provide new approaches to CCAM validation, and many

expert groups formed by different stakeholders, are already working on CCAM systems’

testing and quality assurance. Nevertheless, the lack of a common European validation

framework and homogeneity regarding validation procedures to ensure safety of these

complex systems, hampers the safe and large-scale deployment of CCAM solutions. In this

landscape, the role of standards is paramount in establishing common ground and providing

technical guidance. However, standardising the entire pipeline of CCAM validation and

assurance is in its infancy, as many of the standards are under development or have been

very recently published and still need time to be synchronised and established as common

practice.

Scenario Databases (SCDBs) are another issue tackled by several initiatives and projects,

that generally tends to silo solutions. A clear concrete approach should be used (at least at

European level), dealing with scenarios of any possible variations, including the creation,

editing, parameterisation, storing, exporting, importing, etc. in a universally agreed manner.

Furthermore, validation methods and testing procedures still lack appropriate safety

assessment criteria to build a robust safety case. These must be set and be valid for the whole

parameter space of scenarios. Another level of complexity is added, due to regional

differences in traffic rules, signs, actors and situations.

Evolving from the achievements obtained in HEADSTART and taking other project initiatives

as a baseline, it becomes necessary to move to the next level in the development and

demonstration of a commonly accepted Safety Assurance Framework (SAF) for the safety

validation of CCAM systems, including a broad portfolio of Use Cases (UCs) and

comprehensive test and validation tools. This will be done in SUNRISE, which stands for

Safety assUraNce fRamework for connected, automated mobIlity SystEms.

D6.3 First European Test Case Library | 12

The SAF is the main product of the SUNRISE project. As the following figure indicates, it takes

a central role, fulfilling the needs of different automotive stakeholders that all have their own

interests in using it.

Figure 1: Safety Assurance Framework stakeholders

The overall objective of the SUNRISE project is to accelerate the safe deployment of

innovative CCAM technologies and systems for passengers and goods by creating

demonstrable and positive impact towards safety, specifically the EU’s long-term goal of

moving close to zero fatalities and serious injuries by 2050 (Vision Zero), and the resilience of

(road) transport systems. The project aims to achieve this objective by providing a SAF

consisting of three main components: a Method, a Toolchain and a Data Framework. The

Method is established to support the SAF safety argumentation, and includes procedures for

scenario selection, sub-space creation, dynamic allocation to test instances and a variety of

metrics and rating procedures. The Toolchain contains a set of tools for safety assessment

of CCAM systems, including approaches for virtual, hybrid and physical testing. The Data

Framework provides online access, connection and harmonization of external Scenario

Databases (SCDBs), allowing its users to perform query-based extraction of safety relevant

scenarios, allocation of selected scenarios to a variety of test environments, and generation

of the test results. The SAF will be put to the test by a series of Use Cases demonstrations,

designed to identify and solve possible errors, gaps and improvements to the underlying

methods, tools and data.

Following a common approach will be crucial for present and future activities regarding the

testing and validation of CCAM systems, allowing to obtain results in a standardised way, to

improve analysis and comparability, hence maximising the societal impact of the introduction

of CCAM systems.

The following figure shows the general workplan of the SUNRISE project.

D6.3 First European Test Case Library | 13

Figure 2: Workplan of the SUNRISE Project

1.2 Purpose of deliverable

The purpose of this deliverable is to explain the SUNRISE Data Framework (SUNRISE DF),

as a federation layer under the SUNRISE Safety Assurance Framework, to provide access

and interconnect to existing SCDBs. The nature of the SUNRISE DF described in deliverable

D6.3 is of type DEMO (Demonstrator, pilot, prototype), as described in the Grant Agreement.

The SUNRISE DF is a software platform that contains a few components to implement the

required functionality.

The purpose of this document is to explain:

• The development and deployment of the SUNRISE Data Framework and its components

• The existing connection with existing SCDBs (Adscene, SafetyPool, Scenario.center,

Scenius, Streetwise)

• The developed Demo SCDB to exemplify how SCDBs shall implement the interface

• The technical documentation of the SCDB API requirements.

• Definition of access rights

• Definition of user profile

• Definition of data management mechanism

These deliverable updates some aspects reported in the former “D6.1 Methodology for SCDB

application for generic use cases” (submitted August 2024), including a revised architecture

of the SUNRISE Data Framework, as can be found in section 2.

1.3 Intended audience

The intended audience of this deliverable is multiple: (i) SCDB hosts that may learn from this

document what the SUNRISE Data Framework is and how to create the API interfaces

required to connect their SCDBs, (ii) SCDB users that want to learn what the SUNRISE Data

D6.3 First European Test Case Library | 14

Framework offers, and, (iii) guest users without specific SCDB access, and (iv) other entities

and consortia that may want to extend the SUNRISE Data Framework with additional

functionalities or features.

1.4 Deliverable structure and relation to other parts of project

The contents of this document are divided into the following chapters:

• Chapter 2: SUNRISE Data Framework: this section includes extensive documentation

on the architecture of the SUNRISE Data Framework, along with implementation and

deployment details of the built prototype. The back-end and front-end components are

detailed.

• Chapter 3: Scenario Databases: this section summarizes relevant information about the

external SCDBs connected to the SUNRISE Data Framework, with some details on the

type of user access mechanisms. This section also explains the developed and deployed

Demo SCDB.

• Chapter 4: Conclusions: this section includes the main findings of this deliverable.

• Chapter 5: References: this section contains the bibliography and other references used

in this document.

• Annex 1: Onboarding SCDBs: this section includes high-level information for interested,

external SCDBs about the onboarding process to connect with the SUNRISE Data

Framework.

• Annex 2: Scenario Database API requirements: this section contains the technical

requirements defined for the endpoints to be used for data exchange between SUNRISE

Data Framework (DF) and individual scenario databases (SCDB).

• Annex 3: Data Models for SUNRISE DF tables: This section contains the structure of

the SUNRISE DF storage database.

Relations to Other SUNRISE Tasks and Work Packages

Current deliverable is tightly connected with several other SUNRISE tasks and work

packages, ensuring coherence and integration across the project. The key relationships

include:

• Task T3.4 (Subspace Creation Methodology): Deliverable D3.4 leverages the

subspace creation methodologies developed in task T3.4 for defining and refining queries

in the SUNRISE DF Query Manager. These methodologies support the systematic

selection of scenario subsets relevant for safety assessments [1] .

• Task T5.2 (Ontology): The SUNRISE DF uses the ontology developed in task T5.2 as a

harmonized taxonomy for scenario description and tagging. This ontology enables

semantic queries and consistent scenario classification across different SCDBs [2].

• Task T5.3 (Quality Metrics for SCDB Content): Metrics defined in deliverable D5.3

influence how scenario data quality is assessed and presented in the SUNRISE DF.

Quality indicators provided by deliverable D5.3 inform data exchange processes and

support users in evaluating the reliability and relevance of SCDB content [3].

D6.3 First European Test Case Library | 15

• Tasks T6.1 and T6.2 (Standardized Input/Output Data and Interfaces): Deliverable

D6.3 aligns with tasks T6.1 and T6.2 in defining standardized formats and interfaces (e.g.,

APIs, data schemas) that ensure interoperability between the SUNRISE DF and external

SCDBs [4].

• Work Package 7 (Use Case Development and Execution): The development and

testing of use cases in WP7 rely in part on the SUNRISE DF for accessing and retrieving

relevant scenarios.

1.5 Reformulation of deliverable nomenclature

This deliverable has been produced by the coordinated action of multiple tasks within WP6.

Task T6.4 has contributed significantly to it. In the Grant Agreement, Task T6.4 is entitled

“T6.4 Sample case of a European Test Case Library”. It is there described with the goal “to

develop the First European Test Case Library Prototype as an operational example of the

European level Scenario Data Base initiative […]”. The description also mentions that a

“federation layer will be designed and developed to integrate Scenarios from a variety of

existing DDBB”.

The task has been executed without delays or deviations, following the key aspects present

at the task description in the Grant Agreement, including the development of a software

prototype, as an operational federation layer that provides access to existing databases. This

software is the presented SUNRISE Data Framework, as reported in this deliverable D6.3.

For the sake of clarity, there is a nomenclature-related interpretation issue that requires

clarification to avoid confusion.

The term “test case” was undefined at the time of writing the Grant Agreement and was used

interchangeably with “scenario” and “test scenario”. During the first period of the SUNRISE

project (M1-M12), the terminology was deeply discussed, and the terms have been clarified:

in summary, a “scenario” is a piece of information that describes a driving situation, while “test

case” is a more complex concept that not only includes a scenario, but also a “system under

test”, and a “test environment”. This is a critical distinction, which avoids further confusion

reading through SUNRISE documentation.

During the project-level discussions of SUNRISE, the goal of having a European Test Case

Library was regarded as unfeasible from a technical and organisational point of view

(impossibility to cover the “system-under-test” part), and it was substituted by the achievable

goal of having a European Test Scenario Library, still aligned with the reading of the funding

call, which can be understood as requesting the project to build a European-level repository

of scenarios, but not test cases.

Consequently, task T6.4 (and consequently, this deliverable D6.3), was re-interpreted to

focus on a European Test Scenario Library, which took the form of the SUNRISE Data

Framework, that implements or works as a federation layer providing access to existing

scenario repositories, the so-called SCDBs.

D6.3 First European Test Case Library | 16

The rest of the document targets the description of this SUNRISE Data Framework, and the

connected Scenario Databases.

D6.3 First European Test Case Library | 17

2 SUNRISE DATA FRAMEWORK

2.1 Introduction

The SUNRISE Data Framework (SUNRISE DF), a key outcome of the technical activities in

SUNRISE WP6, serves as the data management layer for the Safety Assurance Framework

(SAF). Its primary purpose is to streamline and centralize access to diverse external SCDBs.

The SUNRISE DF provides a federated set of services that act as a harmonized and

centralized entry point for interacting with existing external SCDBs. This approach ensures

the governability of data owners and protects their business models while enabling seamless

access to scenario data. As illustrated in Figure 3, the position of the SUNRISE DF within the

overall SAF enables efficient validation workflows, advanced querying, and traceable scenario

selection, in line with the SAF's core structure. Its role integrates directly with other SAF blocks,

including Allocate and Execute, making it a critical enabler of end-to-end scenario-based

testing.

Figure 3: Position of the SUNRISE Data Framework within the SAF

Specifically, the SUNRISE DF addresses the SAF's requirements for SCDB interfacing,

including data formatting, query capabilities, and access and authorization control. For data

formatting, SUNRISE DF currently utilizes the ASAM OpenLABEL ontology. In future steps

for the SUNRISE DF, this will be replaced with the more comprehensive SUNRISE Ontology,

developed in Task T5.2 and described in Deliverable D5.2, which also covers INPUT and

OUTPUT standardization as detailed in Deliverable D6.2. The concept of a federation layer

means that data remains distributed across various SCDBs, managed by third-party entities

connected to the SUNRISE DF.

To further enhance data utility, the SUNRISE DF includes data processing services. These

services harmonize queries, facilitate exploration of different SCDBs, analyse search results,

D6.3 First European Test Case Library | 18

and prepare scenario content for its direct use within other SAF blocks like Allocate and

Execution.

The development of the SUNRISE Data Framework was guided by a set of structured

storylines that represent typical interactions and processes involving various stakeholders.

These storylines were instrumental in identifying functional requirements, defining system

behaviour, and ensuring that the SUNRISE DF architecture supports all relevant use cases

across the data management lifecycle.

Storyline-1 focuses on user onboarding, addressing the definition of user roles (such as

consumer, producer, and owner), authentication procedures, and user access via the front-

end dashboard. Storyline-2 covers the onboarding of new SCDBs, including the

responsibilities of the SUNRISE administrator, registration workflows, and configuration of

input/output interfaces with SCDBs. Storyline-3 details the process of querying connected

SCDBs, including the use of the front-end interface for formulating search queries, the role of

the query manager for semantic search, and the management of authorization and API-

specific adaptations. It also includes optional visual analytics functionalities to support

scenario exploration. Storyline-4 addresses the uploading of scenarios to SCDBs, including

editing or creation in the front-end, format harmonization through ontology-based conversion,

authorization handling, and integration with SCDB-specific interfaces for content transfer.

Storyline-5 describes the application of selected scenarios to testing use cases, enabling the

transfer of harmonized scenario data to external testing platforms and retrieval of

corresponding results.

These storylines provided a structured basis for the design and implementation of the

SUNRISE DF, ensuring consistency with the SAF’s functional goals and technical

requirements, and enabling alignment with stakeholder needs throughout the scenario data

workflow.

2.2 Architecture

The SUNRISE DF is a software platform designed to facilitate user interaction with various

SCDBs. It enables parallel queries across these databases and the retrieval of scenario

packages for use in diverse testing activities.

The SUNRISE DF comprises three main parts:

1. Front end components (Web Application)

This user-friendly web application provides an intuitive interface for users to access the

SUNRISE DF's services.

2. Backend Components

These components consist of various services that power the platform's functionality. They

handle user credentials, data storage, process user queries, and manage interactions with

SCDB APIs.

D6.3 First European Test Case Library | 19

3. Data Storage Layer

The data storage layer serves as the central layer for various types of data managed within

the SUNRISE DF. It securely stores:

• SCDB connection and authentication information.

• Saved search queries and configurations.

• Temporary storage for scenario metadata retrieved from SCDBs.

• System logs and operational data for monitoring and auditing.

This layer is essential for ensuring persistence, security, and integrity of data across

multiple user sessions and system operations. While the SUNRISE DF operates as a

federated system accessing distributed SCDBs, the internal data storage ensures that

user-specific data and operational information remain consistent and secure.

The functional architecture of the implemented solution as described in deliverable D6.2 is the

following:

Figure 4 : SUNRISE DF Architecture

D6.3 First European Test Case Library | 20

2.3 Implementation and deployment

The SUNRISE DF is implemented using a combination of modern technologies, which will be

detailed in the subsequent sections. For deployment, the platform leverages Amazon Web

Services (AWS) Amplify.

AWS Amplify is a comprehensive set of tools and services designed to accelerate the

development and deployment of full-stack web and mobile applications on AWS. It significantly

simplifies the process of building scalable, secure, and performant cloud-powered applications

by abstracting away much of the underlying infrastructure management.

Key aspects of AWS Amplify that are particularly beneficial for the SUNRISE DF deployment

include:

• Accelerated Development and Deployment: Amplify offers a streamlined workflow,

enabling rapid prototyping and continuous deployment. It integrates seamlessly with

popular Git repositories (like GitHub, GitLab, and Bitbucket), automating the build, test,

and deployment process whenever changes are pushed to the codebase. This allows the

SUNRISE DF development team to iterate quickly and deliver updates efficiently.

• Managed Hosting: Amplify provides fully managed hosting for web applications,

including support for custom domains and automatic SSL certificates. This ensures that

the SUNRISE DF web application is globally available, reliable, and secure, without

requiring the team to manage servers or networking infrastructure.

• Integration with AWS Services: Amplify acts as a powerful abstraction layer, making it

easy to integrate with a wide array of AWS backend services. This includes services for

authentication (e.g., Amazon Cognito for user management), data storage (e.g., Amazon

S3 for file storage, Amazon DynamoDB for NoSQL databases), serverless functions (e.g.,

AWS Lambda for backend logic), and API development (e.g., AWS AppSync for GraphQL

APIs or AWS API Gateway for REST APIs). This deep integration allows the SUNRISE

DF to leverage the full power of the AWS ecosystem.

• Scalability: Built on AWS's serverless architecture, Amplify automatically scales with

traffic demands, ensuring consistent performance for the SUNRISE DF even during peak

usage. This eliminates the need for manual scaling and infrastructure provisioning,

allowing the team to focus on core application logic.

• Developer-Friendly Tools: Amplify provides a powerful Command Line Interface (CLI)

and libraries that simplify the process of configuring and managing cloud resources

directly from the command line. This allows developers to add functionalities like

authentication, APIs, and storage without needing in-depth knowledge of the underlying

AWS services.

D6.3 First European Test Case Library | 21

Figure 5: SUNRISE Data Framework cloud infrastructure deployment

2.3.1 Back-end components

The back-end components of SUNRISE DF consist of various services crucial for the

platform's smooth operation. These services are implemented using the AWS Amplify

framework, which enables seamless integration and deployment of server-side back-end

components with front-end components. Leveraging TypeScript for back-end development,

the same mechanism used for front-end development, has created a harmonized approach

to implementing the entire platform.

By using a common programming framework with AWS Amplify, based on serverless

components, the costs of using and maintaining the back-end components in AWS are

optimized and allow for dynamic scalability, automatically adjusting resources based on

demand, which translates to significant cost savings and improved performance for users.

The SUNRISE DF back-end components are the following:

• SUNRISE DF Auth Management: service that enables secure authentication flow and

control access to data and files.

• SUNRISE DF Data Management: service that enables built secure, real-time APIs to

interact with AWS databases quickly and easily

• SUNRISE DF Query Manager: a set of back-end functions deployed as AWS Lambda

functions to prepare the queries that will be sent to the different external SCDBs

• SUNRISE DF SCDB Management: a set of back-end functions deployed as AWS

Lambda functions which allow the connectivity and harmonize the requests to the external

SCDBs.

2.3.1.1 Auth Management

The SUNRISE DF Auth Management component is a critical service designed to provide

secure authentication and access control for the entire SUNRISE DF. This component was

D6.3 First European Test Case Library | 22

robustly implemented leveraging the AWS Amplify framework, specifically utilizing AWS

Cognito for its core functionalities.

At the heart of the authentication system is an AWS Cognito User Pool, which serves as the

central directory for managing all user sign-up, sign-in, and authentication processes to the

SUNRISE DF resources. This User Pool is configured to ensure comprehensive user profiles,

requiring the following attributes upon user registration:

• email: The primary email address of the user, used for communication and account

recovery.

• given_name: The user's first name.

• family_name: The user's last name.

• accept_terms: A boolean attribute confirming the user's acceptance of the platform's

terms and conditions, ensuring compliance and user agreement.

This setup ensures that all users are properly identified and that their access is managed

securely within the SUNRISE DF ecosystem.

Figure 6: SUNRISE DF User Pool viewed in AWS Cognito console

Defined User Roles and Permissions

Within the SUNRISE DF Auth Management component, distinct user roles have been defined,

each corresponding to specific User Groups within the AWS Cognito User Pool. These roles

dictate the level of access, and the actions users are permitted to perform on the platform,

ensuring a structured and secure operational environment. The defined user groups are:

D6.3 First European Test Case Library | 23

• Admins:

o Role: Administrators of the SUNRISE DF.

o Permissions: Possess comprehensive rights to manage the platform,

including the ability to delete users, modify user profiles, and change the roles

(user groups) of other users. This group is responsible for the overall

governance and maintenance of the user base.

• SCDB Hosts:

o Role: Users responsible for integrating new SCDBs into the SUNRISE DF.

o Permissions: Are specifically authorized to onboard new SCDBs, configure

their integration details, and manage their availability within the system.

• Users:

o Role: Standard, regular users of the SUNRISE DF.

o Permissions: Can provide connection details to existing SCDBs, create new

queries, and execute queries against the SCDBs they have access to. This

group represents the primary end-users interacting with the data querying

functionalities.

Figure 7: SUNRISE DF defined user groups to handle different permissions within the platform

This role-based access control mechanism ensures that users only have access to the

functionalities necessary for their specific tasks, enhancing security and maintaining the

integrity of the SUNRISE DF.

D6.3 First European Test Case Library | 24

2.3.1.2 Data Management

The SUNRISE DF Data Management service is a core back-end component responsible for

securely storing essential metadata and operational data for the platform. This service is

designed to house critical information such as metadata for registered SCDBs, sensitive user

connection details, and a comprehensive history of scenario queries.

This robust data service is implemented using AWS Amplify, with AWS DynamoDB serving

as the underlying database.

AWS DynamoDB is a service that provides a fast, flexible NoSQL database service for

applications that need consistent, single-digit millisecond latency at any scale. It is a fully

managed, multi-region, multi-master database with built-in security, backup and restore, and

in-memory caching for internet-scale applications. DynamoDB's key characteristics include:

• Serverless: It automatically scales capacity to meet traffic demands, eliminating the need

for server provisioning or patching.

• High Performance: It offers consistent, low-latency performance, making it ideal for high-

throughput, low-latency applications.

• Scalability: It can handle petabytes of data and millions of requests per second, scaling

up or down with zero downtime.

• Durability and Availability: Data is replicated across multiple Availability Zones within

an AWS Region, ensuring high durability and availability.

• Flexible Data Model: It supports both document and key-value data models, allowing for

flexible schema design.

• Security: It provides encryption at rest and in transit, along with fine-grained access

control through AWS Identity and Access Management (IAM).

The following tables have been created within this DynamoDB instance to store vital

information of the SUNRISE DF:

• SCDB

• UserSCDBConnection

• QueryManagerQuery

• UserNotification

Detailed data models for the above tables are provided in Annex 3.

D6.3 First European Test Case Library | 25

Figure 8: SUNRISE DF tables created in AWS DynamoDB

2.3.1.3 Query Manager

The Query Manager is a core component of the SUNRISE DF that serves as the intelligent

query orchestration engine for ODD-based scenario queries. It acts as the central hub where

users define their scenario search requirements and manage their query collections within

the SUNRISE DF.

When users need to find specific scenarios across multiple SCDBs, the Query Manager takes

their ODD selections and transforms them into a standardized format that all connected

databases can understand. This happens through automatic conversion to ASAM OpenLabel

format [5], which ensures that a query created once, can be sent to any connected SCDB

without compatibility issues.

The component maintains a persistent repository of user queries, allowing teams to build up

libraries of reusable search criteria over time. Each query captures detailed ODD

specifications including environmental conditions, road user types, and behavioral patterns.

Users can return to previous queries, modify them as requirements evolve, or reuse them for

different validation scenarios.

Query Management Workflow

The query management process follows a straightforward four-stage workflow:

1. Query Creation & Storage

D6.3 First European Test Case Library | 26

Users build queries through the Search UI by selecting from organized ODD taxonomies. The

system structures these selections into three main categories:

• ODD Elements: Weather conditions, road types, lighting, and other environmental

factors

• Road User Types: Cars, trucks, pedestrians, cyclists, and other traffic participants

• Behavioural Patterns: Lane changes, overtaking, braking, and other driving behaviours

Each query gets a unique identifier (QUE-XXXXXX) and is stored in Amazon S3 with metadata

that includes when it was created, who created it, and which databases it targets.

2. Query Retrieval & Management

The system provides standard database operations for query management:

• Browse existing queries or find specific ones by ID

• Update queries when requirements change or new databases become available

• Delete queries as needed

3. OpenLabel Format Conversion

A critical function of the Query Manager is the automatic conversion of internal query

structures into ASAM OpenLabel format. This standardization process:

• Maps each ODD element to standardized ontology references

• Preserves the include/exclude logic that determines which scenarios match

• Ensures consistent query format across all connected SCDBs

4. SCDB Integration & Dispatch

Once converted, queries are distributed to appropriate SCDBs through the SCDB

Management component. The system handles:

• Figuring out which databases are relevant for each query

• Sending queries to multiple databases simultaneously

• Managing different authentication requirements for each SCDB

• Collecting results and keeping track of which database provided which scenarios

2.3.1.4 SCDB Management

The SCDB Management component in the back-end consist of several functions which allows

storing the information about the SCDB API securely in the configured AWS DynamoDB.

Through the SUNRISE DF frontend the SCDB Host will upload an OpenAPI file with the

specific details of the API. Once the OpenAPI file is uploaded, SUNRISE DF parses the

specification and stores the SCDB’s details in the AWS DynamoDB database, including

endpoint paths and security requirements. This enables SUNRISE to automatically configure

routing, validate expected payloads, and prepare the correct authentication flows when users

attempt to access the SCDB’s resources. As a result, when a user initiates a connection to a

particular SCDB through SUNRISE, the platform knows precisely how to redirect the user into

the appropriate authentication process defined by that SCDB. This foundational onboarding

D6.3 First European Test Case Library | 27

workflow ensures that SUNRISE can support a diverse range of SCDBs with differing

architectures and security models, while maintaining a seamless and consistent user

experience across the federated data framework.

SCDB Authentication and Access Workflow via SUNRISE DF

In the SUNRISE DF, access to Scenario Database (SCDB) APIs is tightly controlled to ensure

security, privacy, and compliance with each SCDB’s specific requirements. A crucial

architectural decision in SUNRISE is that tokens and security credentials never leave the

backend. The SUNRISE frontend is intentionally designed to be token-naive — it does not

store, process, or even see access tokens. Instead, all protected communication with SCDBs

occurs through proxy functions implemented in the SUNRISE backend.

SUNRISE supports two security mechanisms for accessing SCDBs, each defined in the

SCDB’s OpenAPI specification:

1. OAuth2 Authorization Code Flow

For SCDBs secured with OAuth2:

1. User Login or Registration:

A user accesses the SUNRISE frontend and requests a resource that requires SCDB

access. The SUNRISE backend detects the absence of an active session for that

SCDB.

2. Redirection to SCDB Authorization Server:

The SUNRISE backend responds by redirecting the user to the SCDB’s authorization

server login page.

3. User Authenticates at SCDB:

The user logs in (or registers) directly on the SCDB’s own authentication interface.

4. Authorization Code Returned:

After successful login, the SCDB authorization server redirects back to the SUNRISE

backend with an authorization code.

5. Token Exchange:

The SUNRISE backend exchanges the authorization code for a set of tokens:

o Access Token: used to authenticate API calls

o Refresh Token: used to renew the access token when it expires

o ID Token (if issued): contains identity claims, but remains private to the

backend

D6.3 First European Test Case Library | 28

6. Token Storage in Backend:

Tokens are securely stored in the SUNRISE backend for the user’s session context.

They are never exposed to the frontend or user’s browser.

7. API Requests via Proxy Functions:

When the frontend requests SCDB data, it calls SUNRISE backend proxy endpoints.

Subsequently, the backend:

o Attaches the stored access token to the outbound request to the SCDB API

o Processes the SCDB API response

o Returns the data to the frontend in a secure, token-agnostic way

This architecture ensures the frontend remains entirely insulated from SCDB-specific security

implementations, reducing attack surfaces and simplifying frontend code. The corresponding

sequence diagram is depicted in Figure 9.

Figure 9: Sequence diagram depicting the OAuth2 steps within the SUNRISE architecture

2. API Key Security

For SCDBs secured with API keys:

• Users obtain an API key directly from the SCDB provider.

• During configuration or onboarding, the API key is stored securely in the SUNRISE

backend.

• When a frontend operation triggers a SCDB API call, the SUNRISE backend proxy

attaches the required API key in the HTTP headers as specified in the SCDB’s OpenAPI

definition.

D6.3 First European Test Case Library | 29

• The front-end remains unaware of the key and simply consumes the result returned by

the backend proxy.

This process provides a simpler alternative to OAuth2 while maintaining secure separation of

credentials [6].

2.3.2 Front-end components

The web application, accessible at ccam-sunrise.eu, was developed using the React

framework and is hosted on AWS Amplify. The front-end is comprised of the following key

components:

• User Management: This component handles all user-related functionalities, including

user sign-up, registration, and profile updates. It also enables users to request a change

of role to become a scdb_host.

• SCDB Management: Based on the user's permissions (admin, scdb_host, or regular

user), this section allows for the onboarding of new SCDBs and facilitates connections to

existing ones.

• SearchUI: The SearchUI component empowers users to create new queries by selecting

ODD tags. These queries are then dispatched to the connected SCDBs. Once a list of

scenarios is retrieved, this component also allows for the download of scenario packages.

• Dashboard: This component provides users with a comprehensive overview of a

selected SCDB. It displays relevant information such as the total number of scenarios,

the different types of scenarios available, the taxonomy in use, and various quality

metrics.

2.3.2.1 User Management

The User Management component of the SUNRISE DF front-end application is responsible

for handling user authentication and profile administration. It consists of two primary

elements:

1. Accessing Components: This first element provides an interface for users to register

for a new account and log in to the SUNRISE DF. It interacts directly with the AWS

Cognito User Pool configured in the back-end to ensure that all user credentials are

securely stored and managed throughout the authentication process.

D6.3 First European Test Case Library | 30

Figure 10: SUNRISE DF Sign-up and Login pages

The registration form requires users to provide their name, email address, and a

password. Upon submission, the application automatically sends a verification link

to the provided email address.

The user must click this link to verify their account before they can log in. After the

first successful login, the user is directed to the application's main landing page.

Figure 11 : SUNRISE DF landing page

D6.3 First European Test Case Library | 31

2. Profile and Role Management: Once authenticated, this second element allows

users to manage their profiles and update their information. It also facilitates role-

based permissions, providing users with the functionality to request an upgrade of

their role to scdb_host.

2.3.2.2 SCDB Management

In the SUNRISE DF, managing and connecting external SCDBs begins with a structured

onboarding process. Each SCDB host is granted exclusive access to a dedicated SUNRISE

administrative panel, distinct from the interfaces used by regular users. Through this panel,

SCDB hosts can register their SCDB with SUNRISE by providing a fully compliant OpenAPI

specification file. This file, typically validated using tools like Swagger, defines all available

API endpoints, data models, and crucially, the security schemes (such as OAuth2 or API Key

mechanisms) supported by the SCDB API. The onboarding process ensures that all technical

details about the SCDB are formally captured, standardized, and integrated into SUNRISE.

Figure 13 : Interface in SUNRISE for SCDB hosts to add and configure new databases

Figure 12: User profile page with option to request change role as SCDB Host

D6.3 First European Test Case Library | 32

Figure 14: SUNRISE DF form to onboard a new SCDB

Additionally, the SCDB Management component provides functionality for regular users to

establish connections with available SCDBs. The interface presents users with a

comprehensive list of all accessible SCDBs, each accompanied by a "Connect" button.

Upon initiating a connection, a popup window appears, detailing the required authentication

steps. The connection mechanism displayed is dependent on the security method supported

by the specific SCDB. Currently, the SUNRISE DF supports two security methods: API-KEY

and the OAuth 2.0 protocol.

Figure 15 : SCDB management for a regular user

D6.3 First European Test Case Library | 33

2.3.2.3 Search UI

The Search UI component of the SUNRISE DF serves as the primary interface through which

users can explore and retrieve scenarios from connected SCDBs. Designed with usability and

flexibility in mind, this component empowers users to construct semantically rich and targeted

queries based on standardized ODD tags, submit these queries to SCDBs, and manage the

returned results.

Search Workflow:

The search process in the SUNRISE DF is composed of the following stages:

• ODD-Based Query Builder

Users begin by selecting relevant ODD attributes from a structured and interactive

taxonomy-based interface. These attributes typically include:

• ODD

o Environmental Conditions

o Scenery

o Dynamic Elements

• ROAD USER

o Animal

o Human

o Vehicle

• BEHAVIOUR

o Motion

o Communication

Figure 16: Scenario query based on ODD, Behavior and Road Users

• Query Dispatch and SCDB Communication

Once a query is formulated, it is dispatched in real-time to all connected SCDBs using

a standardized query schema. Communication leverages the API definitions. Queries

D6.3 First European Test Case Library | 34

are transmitted concurrently, and the platform handles asynchronous responses from

each SCDB.

• Query Execution & Results Management

Returned scenarios are aggregated and presented to the user in a unified table or

card-based format. Each scenario is accompanied by essential metadata such as:

• Scenario Database, Name, ID, Type and ASAM OpenX

• Scenario Description, Entities, Parameters (Value, Range & Concrete

Variation), Statistics, Include and Exclude information’s.

Figure 17 : Query results page

Figure 18 : Scenario information page

D6.3 First European Test Case Library | 35

• Scenario Package Download

For each scenario (or for selected batches), users can initiate a package download. These

scenario packages are provided in a standardized .zip format which contains scenario data

(See Table 1, Annex 2 for details).

Figure 19 : Download page and internal structure of compressed file

Additional Features:

• Query History and Reusability: Users can view and re-execute their previous

searches from the session history.

• Download Settings: Users can customize the desired OpenX format by modifying the

download options.

2.3.2.4 Dashboard

The Dashboard section of the platform was developed to provide a comprehensive overview

of a selected SCDB. It functions as a central hub for users to access detailed information about

connected SCDBs and monitor their status.

On the left-hand side panel, users can view a list of all SCDBs they are connected to, along

with their current health status, which are dynamically populated based on the SCDB

Management configuration mentioned above.

Dashboard Structure :

The dashboard is organized into four key pages, each designed to present specific insights:

• Common Page:

 Displays essential metadata about the selected SCDB, including its name, owner,

version, available packages, and the total number of scenarios.

D6.3 First European Test Case Library | 36

• Scenarios Page:

 Provides a detailed analysis of SCDB’s scenarios. It includes:

 Filtering and distribution based on entities present in the scenarios, road

types, weather conditions, time of day etc...

 Scenario count by category: Functional, Concrete, and Logical.

 A Scenario Complexity Score Heatmap to visually represent the complexity

and diversity of the scenarios.

• Taxonomy Page:

 Offers a structured view of the Operational Design Domain (ODD) taxonomy,

helping users understand how scenarios are classified according to various driving

conditions.

• Quality Metrics Page:

 Displays critical data quality indicators, including:

 Data Completeness: Measures whether all required data points are present
without gaps or missing entries.

 Detection Accuracy: Evaluates how precisely the system identifies objects,
events, or features in the data.

 Data Freshness: Indicates how up to date the data is, reflecting the most
recent state or condition.

 Overall Accuracy: Assesses how closely the data matches real-world or
ground truth values.

 Data Consistency: Ensures uniformity and logical coherence of data across
time, systems, and formats.

 Distinct Scenarios: Captures the variety of different environmental or
operational conditions included in the data.

 Covered Kilometers: Represents the total distance over which data has been
collected, indicating coverage and scale.

This dashboard section enhances user experience by delivering both summaries and detailed

metrics, enabling the user to have a clearer understanding of the SCDB.

Figure 20 : Overview of metadata and quality metrics for Demo-SCDB

D6.3 First European Test Case Library | 37

3 SCENARIO DATABASES

3.1 Introduction

Ensuring seamless access to and coordinated management of SCDBs is essential. Each

SCDB acts as a well-crafted repository of driving scenarios—spanning real-world incidents to

synthetically generated edge cases—encoded in standardized, interoperable formats.

Federating these SCDBs through a unified framework gives stakeholders consistent access

to scenario data while enabling individual databases to maintain and expand their own content

autonomously. This integrated structure supports efficient scenario selection, retrieval,

validation, and deployment across virtual, hybrid, and physical testing environments, all

governed by harmonized policies and access controls.

Below, we present the key SCDBs available through the SUNRISE DF, highlighting their

scenario collections, credential management methods, usage policies, and API interfaces.

3.1.1 Adscene

ADScene is a robust scenario database and description format jointly developed by Renault

SAS and Stellantis. It enables the creation and management of digital traffic scenarios,

whether manually authored or automatically extracted from real-world driving data. Key

capabilities include browsing, versioned storage in access-controlled containers,

comprehensive scenario history for traceability, and powerful ODD-based querying.

Key Features:

• Scenario creation & management – Supports both manual authoring and automated

extraction from driving data.

• Metadata insights – Provides detailed statistics and parameter distributions to inform

informed scenario selection.

• Rich scenario portfolio – Includes accident-derived scenarios and real-world driving

events.

• External API access – Exposes secure APIs to enable querying from ecosystem tools.

3.1.2 SafetyPool

Safety Pool™ is a secure and collaborative scenario database designed to accelerate both

simulation-based and real-world testing of Connected and Autonomous Vehicle (CAV)

technologies. It offers a standardized repository of driving scenarios to support the

development, validation, and certification of advanced driving systems [7].

Key Features

• Extensive Scenario Library: Contains over 250,000 diverse scenarios curated from

expert-designed cases, accident reconstructions, and naturalistic driving data.

D6.3 First European Test Case Library | 38

• Dual-Level Description: Offers human-readable abstracts along with formal, machine-

readable definitions, catering to both engineers and automated systems.

• ODD & Behavior Tagging: Enables users to filter scenarios by operational domains and

specific maneuvers.

• Platform-Compatible Exports: Scenarios are compatible with ASAM OpenSCENARIO

and OpenDRIVE formats and can be used in various simulation tools.

• Secure, Token-Based Access: Includes a contribution-based credit system, granular

access controls, version tracking, and full metadata for traceability.

3.1.3 Scenario Center

From RWTH Aachen’s Institute of Automotive Engineering (IKA), scenario center is a research

database focused on providing driving scenarios based on a structured scenario concept and

a highly automated toolchain from original source data to usable driving scenarios. The

structured nature of the database allows for more information on distributions over different

scenario characteristics, as well as ODD coverage [8].

The original data source for all scenarios available within scenario center is data from inD.

This is a naturalistic trajectory dataset with 8200 vehicles and 5300 vulnerable road users

recorded. The dataset focuses exclusively on urban traffic. The trajectories from this data set

were converted into the OMEGA format (The OMEGA format is depreciated in favour of the

OmegaPrime format) ground truth data format.

Scenarios within the database follow the structure of the holistic driving scenario concept for

urban traffic. This structure defines all possible bilateral actions between an ego vehicle and

another road user. An example for such a base scenario would be “Left turn following a leading

object”. In total 273 base scenarios have been defined. These can in turn be combined to form

more complex enveloping scenarios. These complex scenarios are extracted from the ground

truth data.

The scenario.center database supports the extraction of these scenarios in the form of

OpenSCENARIO and OpenDRIVE files. Restimulations of the scenarios with esmini are

available in video form to help user understanding of the scenario dynamics, as can be seen

in Figure 20.

D6.3 First European Test Case Library | 39

Figure 21 : Re-simulation of a scenario.center scenario.

Highlights:

• Pipeline: OMEGA input → automated event detection → logical/concrete scenario

exports

• Formats: ASAM OpenSCENARIO/OpenDRIVE compatible

• ODD awareness: Filters via layer-based environmental and dynamic criteria

• Generation modes: Supports “Replay-to-Sim” (RtS), “Advanced Replay-to-Sim” (ARtS),

and parametric generation

• Demo available at scenario.center

3.1.4 Scenius

AVL Scenius is a holistic solution for scenario-based ADAS (Advanced Driver Assistance

System) and AD (Autonomous Driving) safety testing and validation – from requirement

engineering, via scenario creation and management, to test case planning, execution, and

reporting [9].

For integration with SUNRISE DF, AVL SCENIUS employs API Key-based authentication.

Authorized users can access dedicated endpoints within SCENIUS using their assigned API

keys. User credentials and licensing information are provisioned and managed by the

SCENIUS team.

The SCENIUS platform is fully integrated with SUNRISE DF through a dedicated API

controller. This integration includes all necessary endpoints to support operations such as

system health checks, user validation, dashboard data retrieval, scenario querying, and

scenario package downloads.

Scenarios within SCENIUS are stored in full compliance with the ASAM OpenSCENARIO

standard, including both the XML packages and the associated metadata required by

D6.3 First European Test Case Library | 40

SUNRISE DF. As a result, scenario requests are fulfilled with complete, standards-compliant

packages.

Highlights:

• Formats supported: ASAM OpenSCENARIO [10], OpenDRIVE [11], OpenSceneGraph,

OpenXOntology [12]

• ODD & KPIs: Users define ODDs and safety KPIs; linked traceability for SOTIF/ISO

26262 compliance

• Scenario Designer with live editor

• Supports MiL/SiL/HiL/ViL simulation, test planning, and reporting

3.1.5 Streetwise

From TNO (NL), StreetWise is a methodology developed by TNO to use driving data to extract

real-world scenarios, determine the statistics of these scenarios, and use the scenarios for

assessing automated driving systems. To support the research and development of

StreetWise, it comes with a concept database that contains real-world scenarios.

StreetWise takes a data-driven approach. From object-level-trajectory data, it mines tagged,

statistically rich scenarios ideal for ML validation, development, risk assessment and ODD

coverage evaluation [13].

Highlights:

• Inputs: object-level trajectories, often from radar, camera, and CAN logs, or road side

sensors.

• Formats: Exports to OpenSCENARIO/OpenDRIVE

• ODD metrics: Quantifies coverage and reveals “boring miles” vs. risky edge-case

distribution

• Tools: GUI/API-driven export, compatible with Siemens PreScan and AVL

ModelConnect

• Automatically mining scenarios from real-world driving data for creating scenario

database content.

• Multivariate distributions of scenario parameter values are derived using statistical

methods.

• The estimated multivariate distributions can be used to determine the exposure of

concrete scenarios and generate test scenarios that are not necessarily observed in real-

world data.

• Only concrete scenarios can be queried and downloaded, not logical scenarios.

Streetwise Scenario classes

The Streetwise Database, hosted on Azure Cosmos DB and accessible to SUNRIS, contains

scenarios mined from real driving data. Each scenario is categorized into one of the following

scenario classes:

D6.3 First European Test Case Library | 41

1. Lead vehicle decelerating

2. Cut-in in front of ego vehicle

3. Ego vehicle performing lane change with vehicle behind

4. Lead vehicle cruising

5. Ego vehicle approaching slower lead vehicle

6. Ego vehicle driving in lane without lead vehicle

7. Cut-out in front of ego vehicle

8. Lead vehicle accelerating

9. Ego merging into an occupied lane

Streetwise API implementation for SUNRISE

For the SUNRISE project, Streetwise has implemented a new API. Built using Python’s Fast-

API framework, the Streetwise-SUNRISE API provides the endpoints required by the

SUNRISE federation layer, enabling access to the underlying Streetwise database. The API

is deployed as a Docker image on a TNO virtual machine.

API security credentials

The Streetwise-SUNRISE API uses an API key for user authentication. Any user wishing to

access the API must possess a valid API key. Currently, only one API key is active for

accessing the Streetwise-SUNRISE API. New users who require access should contact the

TNO Streetwise team to request the key: Edser.apperloo@tno.nl or Jeroen.broos@tno.nl.

Implemented API endpoints

All SUNRISE API endpoints are implemented within the Streetwise-SUNRISE API:

• /healthcheck (GET): Checks whether the Streetwise database is online and accessible

by SUNRISE. This endpoint does not require authentication.

• /validateUserAuth (POST): Validates the user’s credentials using an API key. Returns

the user's access_scope, which can be either read or write.

• /getScdbInfo (POST): Retrieves general information about the Streetwise database for

display in the SUNRISE dashboard. This endpoint requires an API key and returns a

JSON schema with relevant SCDB data. For demonstration purposes, it currently returns

a static JSON with key SCDB metrics.

• /getScenarioList (POST): Returns a list of matching scenarios based on a SUNRISE

query. Requires an API key and expects a JSON input based on the OpenLabel schema,

containing include/exclude tags selected in the SUNRISE dashboard. Streetwise

provides only concrete scenarios (individual scenario data points), not logical

scenarios (scenarios’ distributions). The response is a JSON object with general scenario

information and parameters, formatted as expected by SUNRISE.

• /getScenarioPackage (POST): Generates an OpenScenario package for the scenarios

selected by the user to download. Requires an API key. This endpoint uses Streetwise’s

test case generator library to create test cases by sampling from the same scenario

distribution as the selected concrete scenarios. As a result, the returned test cases may

differ from the exact queried scenarios but maintain the same core characteristics and

mailto:Edser.apperloo@tno.nl
mailto:Jeroen.broos@tno.nl

D6.3 First European Test Case Library | 42

parameter distributions of the concrete scenario. The generated package includes both

OpenScenario and OpenDrive files.

3.2 Demo SCDB

3.2.1 Objectives of the Demo SCDB within SUNRISE

The Demo SCDB is a mockup or example Scenario Database created as part of the SUNRISE

project to demonstrate how an external SCDB can integrate with the SUNRISE Data

Framework (DF). Its objectives are:

Demonstrating SCDB Onboarding

• Serve as a prototype database to exercise the full onboarding process of registering a

new SCDB into the SUNRISE DF.

• Showcase required information such as SCDB metadata, API specifications, and

credential management (e.g. OAuth, API Key).

• Enable demonstration of the UI flows and backend APIs supporting SCDB onboarding

Modeling Interface and API Specifications

• Provide a reference implementation of the expected APIs on the SCDB side, including

RESTful endpoints, authentication mechanisms, and query/response structures.

• Illustrate compliance with required data formats and standards (e.g. ASAM

OpenSCENARIO, OpenDRIVE, OpenXOntology) for seamless integration into the

SUNRISE DF.

Validating Data Compatibility and Formats

• Ensure that scenario data—including metadata, tags, ODD information, and scenario

packages—can be successfully exchanged with the SUNRISE DF.

• Provide a controlled environment to test SUNRISE DF components such as the Scenario

Manager, Query Manager, and data validation workflows.

Illustrating the End-to-End Use Case Lifecycle

• Demonstrate the complete scenario data flow including:

• Query definition (manual or automated)

• Scenario retrieval from the SCDB

• Validation of retrieved scenarios

• Support traceability between use case requirements and scenario retrieval results.

Providing a Federated Testbed Example

• Serve as an example SCDB that participates in a federated setup within the SUNRISE

DF.

• Showcase handling of multiple SCDB connections, harmonized queries, and secure data

exchanges while preserving SCDB owners’ governance.

D6.3 First European Test Case Library | 43

• Highlight how session-based temporary storage and processing work within the

SUNRISE DF.

The Demo SCDB contains a curated set of example scenarios, including:

• Highway traffic scenarios with simple manoeuvres (overtake, cut-in, …)

• Highway lane change events

• Two-way roads overtake scenario with more than two entities

All scenarios are stored in standardized formats such as ASAM OpenSCENARIO and

OpenDRIVE and include associated metadata compliant with the SUNRISE Ontology. While

these scenarios are simplified compared to production-level SCDBs, they demonstrate the

data structures, query capabilities, and interoperability envisioned by the SUNRISE Data

Framework.

The primary users of the Demo SCDB are the SUNRISE project partners, who have used it

extensively for testing and validating the SUNRISE Data Framework functionalities. In addition

to its integration within the SUNRISE Data Framework, the Demo SCDB will also be made

available through an independent web-based frontend, so that external stakeholder can also

make use of it.

3.2.2 Architecture Summary

The Demo SCDB is deployed as a serverless, cloud-native architecture. Key design features

include:

• AWS CloudStack-based deployment (CDK)

• Modular architecture with isolated constructs for each service (e.g., S3, DynamoDB,

Cognito, Lambda)

• REST API gateway with defined resource routes

• Integration with federated SUNRISE DF via secure APIs and credential management

• Data stored in both object storage (S3) and structured metadata tables (DynamoDB)

• Scheduled cleanup for temporary storage to simulate SUNRISE DF session-based data

retention

3.2.3 Backend Architecture

The main backend is defined in a CDK lib file which orchestrates the full cloud resources for

the Demo SCDB, including:

• Cognito User Pool for authentication

• DynamoDB for metadata storage

• S3 for scenario package storage

• Lambda functions for business logic

• Scheduled cleanup Lambda for temporary data

• API Gateway for exposing REST APIs

D6.3 First European Test Case Library | 44

All components are provisioned using AWS CDK (Cloud Development Kit) in TypeScript,

ensuring infrastructure-as-code and easy reproducibility.

Figure 22: AWS Resource Architecture and Service Connections for the Demo SCDB

The following sections provide a brief overview of the internal structure of each of the

components implemented in the CDK, to further clarify the data model and the workings of the

backend of the Demo SCDB.

3.2.3.1 Cognito Authentication

The Demo SCDB creates a Cognito User Pool that provides:

• User sign-up and sign-in

• Token issuance (JWT) for secure authentication

• Integration with API Gateway for protecting endpoints

The Cognito user pool defines four distinct user groups, each with specific roles and

permissions:

1. Guest — Has limited access, can view a list of scenarios and download a small number

of scenarios.

2. Standard — Has unlimited access to view and download scenarios.

3. Contributor — Can view and download scenarios and is allowed to upload new

scenarios.

4. Admin — Has full access to all data and functions, including user management

capabilities.

D6.3 First European Test Case Library | 45

3.2.3.2 DynamoDB

The Demo SCDB uses a modular and efficient DynamoDB schema to store and manage

scenario metadata and relationships. The architecture relies on two primary tables:

1- Scenario

This single-table design ensures all scenario-related metadata, file references, and

associated details are captured in a single DynamoDB item, optimizing retrieval and

reducing the need for multiple table joins. The scenarios table stores comprehensive

metadata for each scenario, including:

o Id: Unique scenario identifier

o scenarioName: Name of the scenario

o description: Scenario description

o scenarioDatabase: Indicates the source database (e.g.,

VICOMTECH_SCENARIO_DB)

o scenarioType: Scenario classification (e.g., Concrete)

o tags: Array of tag identifiers associated with the scenario

o openXAvailability: Flags indicating availability of formats like OpenSCENARIO

(OSC), OpenDRIVE (ODR), or OSG

o entities: List of entities participating in the scenario

o scenarioParameters: Detailed parameter definitions relevant to the scenario

o odd: Operational Design Domain attributes

o files: List of file objects including filename, S3 storage key, content type, upload

timestamp

2- Tag-scenarios

This table enables efficient reverse lookups, such as retrieving all scenarios associated

with a specific tag. By separating tag associations into a dedicated table, the system

avoids expensive scans of array attributes in the primary scenario table, significantly

improving query performance. This table acts as a many-to-many mapping between tags

and scenarios:

o tagId (Partition Key) – The tag identifier

o scenarioId (Sort Key) – References the linked scenario

Together, these tables support rapid, indexed retrieval of scenarios and ensure scalable

storage for both metadata and tag relationships.

The Demo SCDB design intentionally avoids creating a separate table for tag definitions

because tag metadata is centrally stored in S3 as a JSON ontology, ensuring consistency,

versioning, and easier updates.

This DynamoDB structure models how SCDBs store scenario descriptors in a way that aligns

with the SUNRISE DF architecture, providing both flexibility and performance for querying and

managing large volumes of scenario data.

D6.3 First European Test Case Library | 46

3.2.3.3 S3 Storage

The Demo SCDB uses Amazon S3 as the primary storage layer for all scenario-related files.

This includes:

• Scenario Packages – Files in OpenSCENARIO (.xosc), OpenDRIVE (.xodr), or other

formats used for defining traffic scenarios

• JSON Metadata – Machine-readable metadata describing scenarios

• Image Files – Visual assets linked to scenarios, such as thumbnails or diagrams

All files are organized in a structured key format (/{scenarioId}/{fileName}) and Scenario file

references, including S3 keys, content types, and upload timestamps, are stored in

DynamoDB, ensuring seamless linkage between the metadata layer and the physical files in

storage. This architecture ensures data consistency, security, and efficient retrieval of large

binary assets required for simulation and validation workflows within the SUNRISE DF.

3.2.3.4 Lambda Functions

Two primary Lambda constructs have been developed within the Demo SCDB architecture,

each serving distinct purposes. In this document, a “Lambda construct” means how AWS

Lambda functions are grouped and defined as reusable components in the AWS CDK.

i) The first set of Lambdas is designed for API integration. These functions are triggered

by API Gateway requests and handle all necessary computations, including database

interactions and business logic processing. They manage key operations such as:

o Scenario uploads

o Metadata retrieval

o Data validation

o Query processing

These Lambdas are tightly coupled to specific API routes through API Gateway

integrations, enabling seamless request-response handling.

ii) The second Lambda construct, defined in Cleanup-construct, is focused on internal

data management. These functions are invoked either on scheduled intervals or in

response to changes in the database. They are responsible for performing cascade

actions, such as:

o Synchronizing deletions or updates between the scenario table and related tag-

scenario tables

o Removing corresponding files from S3 buckets when an associated scenario

record is deleted

Together, these Lambda functions implement the Demo SCDB’s core backend logic, ensuring

both external API services and internal maintenance processes operate efficiently and reliably.

D6.3 First European Test Case Library | 47

Figure 23: Architecture of the lambda function in the AWS CDK

3.2.3.5 API Gateway

Demo SCDB uses Amazon API Gateway to expose a comprehensive set of RESTful API

endpoints, serving both the SUNRISE Data Framework requirements and the internal

operational needs of the Demo SCDB.

This API layer is configured with:

• Resource-based routing — Endpoints are organized as REST resources with logical

paths (e.g. /scenarios, /files, etc.) to model different operations and services.

• Cognito integration — All protected routes are secured using AWS Cognito, which

enforces authentication and supports fine-grained authorization through OAuth 2.0

scopes. This ensures compliance with the SUNRISE federation security model.

• CORS configuration — Cross-Origin Resource Sharing (CORS) is fully enabled to allow

secure requests from external front-end clients, such as the SUNRISE DF web interface.

The API allows:

o All HTTP methods (GET, POST, etc.)

o Common headers like Authorization, Content-Type, X-Amz-Date, and custom

tokens

o Credentialed requests, supporting secure cookie or token-based authentication

• Custom error handling — Standardized API Gateway responses are defined for

unauthorized and access-denied cases, ensuring consistent client-side error handling

and seamless integration into front-end applications.

The Demo SCDB API Gateway implements two main categories of endpoints:

1. SUNRISE-Compliant Standard APIs

These are designed to fulfil SUNRISE DF’s interoperability requirements. They include:

o Five standard endpoints that follow the data models and JSON schemas

defined in Annex 2.

D6.3 First European Test Case Library | 48

o OAuth-protected routes that support scopes for both read and write operations,

ensuring secure integration with the federated SUNRISE ecosystem.

2. Demo SCDB Internal and Administrative APIs

In addition to the SUNRISE-standard endpoints, the Demo SCDB provides several private

APIs for internal operations and administrative tasks. These include:

o File uploads and retrieval (e.g. presigned URL generation, direct uploads to

S3)

o Scenario metadata population and validation

o Flexible methods for creating, retrieving, and updating scenarios

o Administrative or operational endpoints that mirror the types of APIs found in

any production-grade Scenario Database

These internal APIs are designed for the day-to-day management of the Demo SCDB itself

and are not part of the official SUNRISE federation interface. They are, however,

representative of capabilities any real-world SCDB would implement for managing its data and

content.

Security and Usage Controls

• Authorization and Scopes: The Demo SCDB uses Cognito authorizers and resource

servers to manage fine-grained permissions through OAuth 2.0 scopes, ensuring that

only authorized users or systems can invoke sensitive operations.

• API Keys and Usage Plans: Some internal APIs also enforce API key requirements to

manage usage and apply throttling rules, which limit how many requests a client can

make in a certain time period. This helps protect backend services and ensures fair usage

among clients.

• Binary Support: The API Gateway is configured to support binary media types like ZIP

archives and generic binary streams, enabling flexible file upload and download

operations.

This architecture provides both compliance with SUNRISE federation standards and the

flexibility to support the operational needs of a standalone scenario database, ensuring the

Demo SCDB serves as a practical, real-world example for future SCDB implementations.

3.2.4 DEMO SCDB Frontend

To support the development and testing of the Demo SCDB, we created a dedicated frontend

application using React and the modern Vite build toolchain. This frontend serves several

critical purposes. Firstly, it enables comprehensive testing and demonstration of all backend

APIs, including scenario uploads, retrieval of SCDB information, searching, and executing

operations defined by the SUNRISE Data Framework. It also includes advanced

administrative views for monitoring database tables, managing file uploads, and visualizing

backend system health. Additionally, the frontend implements token inspection and decoding

capabilities, allowing user information and group memberships directly within the UI for

effective testing of role-based access controls (RBAC).

D6.3 First European Test Case Library | 49

From a technical perspective, the frontend leverages React Router for navigation,

TypeScript for type safety, and various libraries for UI components and animations, creating

a modern, responsive user experience.

For production deployment, the compiled static assets from the Vite build are intended to be

distributed via AWS CloudFront, providing global low-latency access and caching. The

application is configured to read all necessary backend URLs and environment-specific

settings from environment variables defined in the .env file, ensuring flexibility and secure

separation of configuration from code.

This frontend not only accelerates development and integration testing with the SUNRISE DF

but also serves as a reference implementation for how SCDB frontends can interact with the

SUNRISE DF.

3.2.5 Scenario Generation

To streamline the generation and population of scenarios within the Demo SCDB, a dedicated

Python toolkit was developed, that automates both scenario synthesis and metadata

generation. This toolkit serves as a wrapper around the scenariogeneration library [14] and

integrates ontology processing logic to produce meaningful, structured metadata. The

metadata is compatible with both the OpenLABEL standard, and the internal JSON schemas

defined by the deliverable D5.2 for queryability and semantic annotation.

Crucially, this metadata—generated alongside OpenSCENARIO and OpenDRIVE scenario

files—is designed to align with the schema expected by our backend DynamoDB tables. When

scenarios are uploaded via the frontend interface, the logic implemented there parses and

transforms the metadata to seamlessly populate both the scenario and tag-scenario tables.

Fields such as scenario ID, name, description, tags, ODD descriptors, scenario parameters,

file references, and ontology-driven entity relationships are populated automatically,

minimizing manual input and reducing integration errors.

Together, the Python toolkit and frontend logic form a cohesive pipeline that orchestrates the

full workflow: from automated scenario generation, through standardized metadata creation,

to secure, structured ingestion into the Demo SCDB backend. This ensures consistency,

scalability, and full alignment with SUNRISE ontology.

D6.3 First European Test Case Library | 50

4 CONCLUSIONS

This deliverable contains an explanation and documentation of the SUNRISE Data Framework

(DF), a supporting tool for the SUNRISE Safety Assurance Framework (SAF). The SUNRISE

DF implements a federated architecture that enables seamless, secure, and standardised

access to multiple external scenario databases (SCDBs), addressing the critical need for a

harmonized European-level scenario library. The SUNRISE DF is deployed in a cloud service

and can be accessed at ccam-sunrise.eu

The main achievements of the deliverable are:

• Design and deployment of the SUNRISE Data Framework: a modular, cloud

application developed, integrating several back-end and front-end components as

explained in Chapter 2, to support secure user access, scenario querying, and

data exchange with the external SCDBs that connect to it. The architecture ensures

scalability, interoperability, and compliance with diverse security models (OAuth2, API

keys).

• Interconnection with external SCDBs: the SUNRISE DF has successfully been

connected with several major SCDBs: ADSCENE, SafetyPool, Scenario.center,

Scenius, and Streetwise, demonstrating its ability to interoperate using the defined

SUNRISE input and output interfaces as defined in tasks T6.1 and T6.2, and

effectively provide data content from the external SCDBs in a harmonized manner.

Details about each SCDB connected to SUNRISE DF could be found in Chapter 3.

• Development of the Demo SCDB: a fully functional reference implementation of a

scenario database has been created to illustrate onboarding procedures, API

compliance, and standard interfaces. This Demo SCDB serves as a blueprint for

future external SCDB integrations and has supported validation of the SUNRISE DF

components during the SUNRISE project. A complete description of the

implementation of Demo SCDB is found in Section 3.2.

• Definition of API requirements: a comprehensive set of technical specifications

established to guide external SCDBs owners to create a programmatic interface

between applications using OpenAPI interface definition. More information is found

in Annex 2.

• Support for ontology-driven querying: the SUNRISE DF enables semantic

scenario search through harmonised tagging and ontology, facilitating harmonisation

and standardisation (more information in deliverables D5.2 and D6.2).

The work presented in this deliverable, the SUNRISE Data Framework, paves the way for the

harmonisation and centralisation of scenario databases among European practitioners of

scenario-based testing, which in turn supports the adoption of the SUNRISE Safety Assurance

Framework.

D6.3 First European Test Case Library | 51

Looking ahead, several key areas for improvement have been identified for the SUNRISE DF.

Immediate enhancements should focus on the query generation process by providing

support for valued parameters and integrating the recently finalized T5.2 ontology [2] to

enrich scenario querying.

A further consideration is the implementation of a mechanism to upload scenarios directly to

SCDBs. However, the viability of this feature is contingent on future discussions and analysis

to confirm whether external SCDBs can and will accept such uploads.

D6.3 First European Test Case Library | 52

5 REFERENCES

[1] SUNRISE, “D3.4 Report on the Initial Allocation of Scenarios to Test,” 2024. [Online].

[2] SUNRISE, “D5.2 Harmonised descriptions for content of CCAM safety assessment
data framework,” 2025. [Online].

[3] SUNRISE, “D5.3 Quality metrics for scenario database,” 2025. [Online].

[4] SUNRISE, “D6.1 Methodology for SCBD application for generic use cases,” 2024.
[Online].

[5] ASAM, “ASAM OpenLABEL®,” ASAM, 12 November 2021. [Online]. Available:
https://www.asam.net/standards/detail/openlabel/. [Accessed 23 August 2024].

[6] D. Hardt, “The OAuth 2.0 Authorization Framework,” Fremont, CA (optional – for
IETF reports), 2012.

[7] WMG, “Safety Pool™ Scenario Database,” 2024. [Online]. Available:
https://www.safetypool.ai/. [Accessed 11 July 2024].

[8] C. G. L. E. Michael Schuldes, “scenario.center: Methods from Real-world Data to a
Scenario Database,” IEEE Intelligent Vehicles Symposium (IV) , pp. 1119-1126,
2024.

[9] AVL, “AVL SCENIUS,” AVL, 2024. [Online]. Available: https://www.avl.com/en-
es/testing-solutions/automated-and-connected-mobility-testing/avl-scenius.

[10] ASAM, “ASAM OpenScenario,” 2024. [Online]. Available:
https://www.asam.net/standards/detail/openscenario/. [Accessed 07 July 2024].

[11] ASAM, “ASAM OpenDRIVE,” 2024. [Online]. Available:
https://www.asam.net/standards/detail/opendrive/. [Accessed 07 July 2024].

[12] ASAM, “ASAM OpenXOntology Concept,” ASAM, 2021. [Online]. Available:
https://www.asam.net/standards/asam-openxontology/.

[13] TNO, “StreetWise: scenario based safety assessment for automated driving,” TNO,
2025. [Online]. Available: https://www.tno.nl/en/digital/smart-traffic-transport/safety-
assessment-automated-driving/streetwise/.

[14] I. N. A. T. J. K. Mikael Andersson, “Github repository,” 2025. [Online]. Available:
https://github.com/pyoscx/scenariogeneration.

D6.3 First European Test Case Library | 53

ANNEX 1. ONBOARDING TO SUNRISE DF

Purpose and Scope

The SUNRISE Data Framework (DF) establishes a federated approach for scenario data

sharing, enabling seamless integration of multiple scenario databases (SCDBs) while

respecting data governance and ownership. Access to scenario data within each SCDB is

managed according to the policies and requirements of the respective SCDB host1, meaning

users must obtain credentials or authorization directly from each SCDB host. The SUNRISE

DF facilitates a harmonized interface and supports secure, traceable user access but does

not override individual SCDB access controls. This ensures that SCDB owners maintain full

control over their data and compliance with relevant agreements, while users benefit from a

unified, ontology-driven query mechanism that spans diverse databases under common

standards.

This document guides external SCDB owners through the four-phase onboarding process to

connect their scenario metadata to the SUNRISE DF. It outlines mandatory requirements, API

interface expectations, ontology alignment, and long-term responsibilities. Integration with the

SUNRISE DF enables centralized access, semantic querying, and validation-ready scenario

discovery.

The onboarding process is organized into four progressive phases, as depicted in Figure 24,

each designed to facilitate smooth and sustainable integration:

• Phase 1: Readiness Assessment

• Phase 2: Initiation and Planning

• Phase 3: Implementation and Validation

• Phase 4: Operation and Lifecycle Management

1 NOTE: in this document we refer to SCDB hosts, owners or providers, as synonyms, referring to
entities that manages, owns or serves scenario databases services

D6.3 First European Test Case Library | 54

Figure 24 : SUNRISE Data Framework onboarding process.

Preparation & Requirements

Before registering as an SCDB Host in SUNRISE, providers must ensure:

Scenario components: Each scenario inside the SCDB includes a description file, a road

network file, and all required scenario definition files (i.e., an OpenScenario XML-compliant

.xosc file and an OpenDrive 1.X-compliant .xodr file). Additionally, optional files like scene

graph files (e.g., osgb,.opt. osgb, or. ive) and OpenScenario distribution files may be provided

and will be made available to users upon request.

Metadata structure: The metadata for each scenario in an SCDB should include general

information—such as scenario ID, name, and description—as well as a comprehensive set of

query-relevant tags describing scenario attributes (e.g., manoeuvrers, environmental

conditions, participants, etc.). While these tags do not need to follow the SUNRISE Ontology2

natively, they must be sufficiently detailed and complete to support mapping to the SUNRISE

Ontology as needed for integration.

For example, consider a case where a user wants to find all scenarios involving a “cut-in”

manoeuvre occurring in rainy weather. If the internal metadata includes appropriate tags (such

as “cut in” and “rainy weather” or similar equivalents), it is possible to map these to the

SUNRISE Ontology during integration. This ensures that such queries will yield all applicable

scenarios, enabling seamless and consistent search functionality across different databases

once connected via the SUNRISE Data Framework.

2 SUNRISE Ontology – see SUNRISE deliverable “D5.2 Harmonised descriptions for content of
CCAM safety assessment data framework”

D6.3 First European Test Case Library | 55

Initiation & Planning

Once the above requirements are met, providers should:

• Register and Request SCDB Host Role:

 Sign up via the SUNRISE sign-in page.

 Navigate to your profile and request the SCDB Host role.

• Alignment Session:

Once the SCDB Host role is approved, a planning session is available on request with the

SUNRISE DF team to discuss architecture, API integration, metadata expectations,

ontology alignment, and the onboarding timeline.

Implementation & Validation

At this stage, the SCDB owner is expected to integrate with the SUNRISE framework by

providing a stable API in the SUNRISE format, supporting ontology-based scenario queries,

and participating in validation and testing. A query mapping layer may be required to handle

SUNRISE-tagged queries. SUNRISE will provide support throughout the process. The main

activities include:

API Implementation and Deployment: Develop and deploy a robust API for the SCDB,

ensuring all endpoints are clearly documented using OpenAPI 3.0+ (see Annex 2). The API

must support query and response structures defined by the SUNRISE-provided JSON

schema, enabling consistent and standardized communication with the SUNRISE DF.

Ontology Alignment and Query Mapping: Adapt the SCDB’s data model and query

handling logic to align with the SUNRISE ontology and tagging structure. If necessary,

implement a query mapping layer to translate SUNRISE-compliant queries into SCDB-specific

filters and ensure that responses use the correct tags and formats. Reference examples and

further guidance are available in the SUNRISE documentation.

Validation and Testing: Engage in a validation phase led by the SUNRISE team, which will

include reviewing API documentation, test endpoints, and verifying that the SCDB correctly

handles queries and returns accurate results. This process ensures full interoperability and

compliance with SUNRISE requirements.

Operation & Maintenance

After successful validation, the SCDB is integrated into the SUNRISE DF. Ongoing

participation is based on the following recommendations:

Availability: It is advisable to uphold robust operational reliability of metadata endpoints,

aiming for sustained high availability, and to ensure that any service interruptions are

communicated proactively.

D6.3 First European Test Case Library | 56

Quality Assurance: SCDB Providers are encouraged to uphold high standards of accuracy,

completeness, and consistency in all scenario metadata. Maintaining this level of quality

supports reliable data integration and downstream usage.

Coordination: Ongoing, open communication is strongly encouraged. Providers should

proactively inform the SUNRISE team of any upcoming structural changes and are

encouraged to address feedback or support requests in a timely and collaborative manner.

 Summary for Onboarding

• Read terms and conditions of SUNRISE DF

• Ensure scenario files and summaries are in place

• Confirm metadata structure and ontology readiness

• Maintain full data ownership and licensing transparency

• Initiate contact with SUNRISE DF

• Attend alignment session and agree on integration plan

• Develop and publish compliant metadata API

• Undergo testing and validation with SUNRISE

• Maintain live service, metadata quality, and communication

Contacts and References

• Onboarding support: contacts@ccam-sunrise-project.eu
• Ontology and metadata guidance: contacts@ccam-sunrise-project.eu
• Templates and schemas: SUNRISE Documentation Portal

Onboarding Step-by-Step Guide

1. Introduction

The SUNRISE Data Framework enables integration of external Scenario Databases (SCDBs)

through a secure, standardized onboarding process.

This guide provides step-by-step instructions with screenshots to help SCDB providers:

• Register for the SUNRISE platform

• Request and obtain the SCDB Host role

• Configure and connect a new SCDB

2. Registration in SUNRISE

To begin, register for a SUNRISE account:

D6.3 First European Test Case Library | 57

Visit the SUNRISE Sign-In Page3, and Click Sign Up and complete the registration form:

• Full Name

• Email Address

• Password

Once completed, you’ll receive a confirmation email.

Figure 25: SUNRISE User Registration Screen

3. Requesting the SCDB Host Role

After registering and signing in:

• Click your profile icon in the top-right corner.

• Select My Profile.

• Click Request Role change to SCDB Host and submit your request.

Your request will be reviewed by the SUNRISE DF team. You will receive email confirmation

once approved.

3 ccam-sunrise.eu

D6.3 First European Test Case Library | 58

4. Add a new SCDB

Once the SCDB Host role is approved:

 You will continue to access Manage SCDB from the dropdown menu in the top-right corner.

 However, an additional tab called “Add new SCDB” becomes visible within the SCDB

Configuration page. This tab allows SCDB Hosts to create and configure new SCDB

integrations.

Figure 27: Manage SCDB dropdown in user menu and SCDB Configuration

Clicking “add new SCDB” Tab a pop-up window opens, containing three tabs for configuration:

Tab 1 – General Information

▪ Enter the SCDB Name and Description.

▪ Upload the OpenAPI JSON specification file for your SCDB.

Figure 26: Requesting SCDB Host Role

D6.3 First European Test Case Library | 59

Tab 2 – Security Configuration

Based on the uploaded OpenAPI file, select the security schema required for your SCDB

integration (e.g. API key, OAuth).

Tab 3 – Endpoint Mapping

For each of the five core endpoints required by SUNRISE, choose the corresponding endpoint

path from dropdown lists.

Example: Map the HealthCheck function to /healthcheck or your equivalent endpoint.

After completing all tabs, click Save to finalize your SCDB setup. You can then test the

connection to ensure successful integration.

Figure 28: Tabs related to add new SCDB

D6.3 First European Test Case Library | 60

ANNEX 2. SCENARIO DATABASE API

REQUIREMENTS

Introduction

This document describes requirements for the endpoints that will be used for data exchange

between SUNRISE Data Framework (DF) and individual scenario databases (SCDB).

Data Framework Components section contains information related to main components that

take place in SUNRISE DF. More detailed information for each component can be found in

the project folder.

API Endpoints section contains technical specifications related to endpoints that need to be

implemented by individual SCDBs. Example request, response and schema files will be

distributed with this document.

Data Framework Components

Dashboard

Dashboard is used to show information related to connected databases.

Search UI

Search UI is used to retrieve scenarios from SCDBs by using query criteria.

Scenario Manager

Scenario Manager is the component that applies validity checks on retrieved scenarios.

API Endpoints

SCDB Health Check - /healthCheck

Endpoint Objective

This endpoint reports the SCDB's online status, allowing the SUNRISE Data Framework to

confirm that the SCDB is operational and ready to receive requests and facilitate interaction.

Use Cases

• When onboarding a new SCDB, the SUNRISE Data Framework will check the online

status of the SCDB before uploading the SCDB API details to SUNRSIE Data

Framework database.

• When a user wants to connect to a SCDB, the SUNRISE Data Framework will check

the online status of the SCDB.

D6.3 First European Test Case Library | 61

HTTP Method

 HTTP GET

Expected Behaviour

Input Validation:

No input is required in this endpoint

Business Logic:

The SCDB will return its availability to perform API requests

Dependencies:

There is no SUNRISE DF related dependency defined for this endpoint.

Response Requirements

Expected Outputs

This endpoint will return a JSON message with the online availability of the SCDB. The

returned message will follow a JSON schema which is attached with the complementary files

of this document.

Response Status Codes

• 200: OK - Dashboard information successfully retrieved.

• 400: Bad Request – Request is not formed correctly

• 404: Not Found – Requested endpoint does not exist

• 429: Too Many Requests – Request rate is higher than SCDB can handle

• 503: Service Unavailable – Service / Endpoint is temporarily unavailable

Error Handling

Error responses should include details about the issue

Non-Functional Requirements

Security

This endpoint will not have any security layer; the request should be user-agnostic. Meaning

that no authentication or authorization is required.

Usability

• Error messages must be descriptive and provide actionable insights to users or

developers.

D6.3 First European Test Case Library | 62

• JSON responses should adhere to a clear and consistent schema, making it easier for

frontend and backend developers to consume and debug the data.

Scalability

With the large number of users of SUNRISE DF, the SCDB API should be able to handle many

requests.

Validate User Auth - /validateUserAuth

Endpoint Objective

This endpoint verifies user authentication against the SCDB. It enables the SUNRISE DF to

validate provided user credentials, such as API keys or tokens, and confirm authorization for

SCDB API requests. In addition, this endpoint should allow to receive the access scope of the

user to the SCDB.

Use Cases

• This endpoint validates the provided API-key for SCDB implementations utilizing API-

key authentication. Successful validation confirms the key's authorization to access

SCDB API resources.

• SUNRISE DF utilizes this endpoint to verify user authentication against SCDB,

supporting both OAuth 2.0 and API-key authentication methods.

HTTP Method

 HTTP POST

Headers

Header Description

Content-Type application/json

Accept application/json

X-API-Key Optional API key for authentication

Authorization Optional OAuth2 Bearer token

D6.3 First European Test Case Library | 63

Expected Behaviour

Input Validation:

This endpoint does not mandate a request body. However, depending on the security

mechanisms implemented by the respective SCDB API (API-KEY, token, OAuth2), certain

parameters will be necessary for successful authentication. Examples include:

• API Key Authentication: The API-KEY can be provided within the request header,

body, or as a query parameter.

• Bearer Token Authentication: The bearer token must be included in the Authorization

header.

• OAuth2 Authentication: Following successful user authentication with the API's

authentication server, the resulting access token must be supplied in the Authorization

header of the request.

Business Logic:

The request should include the necessary authentication configuration to verify the identity

and authorization scopes in the SCDB.

Dependencies:

There is no SUNRISE DF related dependency defined for this endpoint.

Response Requirements

Expected Outputs

The response of the endpoint may be a JSON message containing the following fields:

• Authorization: flag to indicate if the user is authorized to make queries to the SCDB.

• Access scope: list of access levels to the SCDB content

The schema and examples of the responses are included in the complementary files attached

with these requirements specifications.

Status Codes

• 200: OK – Authorization is correct

• 400: Bad Request – Request is not formed correctly

• 401: Unauthorized – Request does not contain proper authorization

• 404: Not Found – Requested endpoint does not exist

• 429: Too Many Requests – Request rate is higher than SCDB can handle

• 503: Service Unavailable – Service / Endpoint is temporarily unavailable

D6.3 First European Test Case Library | 64

Error Handling

Error responses should include details about the issue

Non-Functional Requirements

Performance

There is no performance requirement defined for this endpoint.

Security (authentication)

Authentication will be inherited from SUNRISE DF’s authentication layer. Depending on the

individual SCDB, API key or token can be used.

Usability

• Error messages must be descriptive and provide actionable insights to users or

developers.

• JSON responses should adhere to a clear and consistent schema, making it easier for

frontend and backend developers to consume and debug the data.

Reliability and Availability

There is no specific reliability requirement defined for this endpoint.

For the availability, it is expected that the corresponding endpoint to be available at all times

in individual SCDB side.

Dashboard Info - /getScdbInfo

Endpoint Objective

This endpoint provides information for the Dashboard component by querying the selected

SCDB. It enables users to retrieve database details, visualize scenarios, and analyze key

metrics through an interactive and customizable dashboard.

Use Cases

• Users select an SCDB and initiate a request through the Dashboard UI (frontend). The

backend processes the selection, retrieves SCDB information, and returns it in a

structured JSON format. Information returned includes metadata, scenario

breakdowns, statistics, taxonomy and quality metrics.

• Users can add interesting graphs to the summary page and download it as PDF

HTTP Method:

HTTP POST

D6.3 First European Test Case Library | 65

Headers

Header Description

Content-Type application/json

Accept application/json

X-API-Key Optional API key for authentication

Authorization Optional OAuth2 Bearer token

Expected Behavior

Input Validation:

Requests must include a valid SCDBID parameter. Input is validated against the API schema.

Business Logic:

SCDBID is used to query the relevant SCDB.

SCDB should provide detailed database information, including metadata, SCDB quality

metrics, statistics and taxonomy details.

Dependencies:

• Responses rely on the structure and availability of data in individual SCDBs.

Response Requirements

Expected Outputs

The endpoint returns a JSON payload containing:

• SCDB metadata (e.g. name, owner, version, and license expiration).

• Health status

• SCDBs details, including parameters statistics, entities, odd, quality metrics etc.

(Scenarios list if it’s required in the taxonomy).

In case of an unavailable field in the SCDB the field should be null in the JSON.

Status Codes

• 200: OK - Dashboard information successfully retrieved.

D6.3 First European Test Case Library | 66

• 400: Bad Request – Request is not formed correctly

• 401: Unauthorized – Request does not contain proper authorization

• 404: Not Found – Requested endpoint does not exist

• 429: Too Many Requests – Request rate is higher than SCDB can handle

• 503: Service Unavailable – Service / Endpoint is temporarily unavailable

Error Handling

Error responses should include details about the issue

Non-Functional Requirements

Performance

There is no performance requirement defined for this endpoint.

Security (authentication)

Authentication will be inherited from SUNRISE DF’s authentication layer. Depending on the

individual SCDB, API key or token can be used.

Usability

• Error messages must be descriptive and provide actionable insights to users or

developers.

• JSON responses should adhere to a clear and consistent schema, making it easier for

frontend and backend developers to consume and debug the data.

Scalability

SCDBs with higher data volumes (e.g., millions of scenarios) should not degrade overall query

performance.

Query Scenarios - /getScenarioList

Endpoint Objective

This endpoint is used for querying scenario database (SCDB) by using ODD / Requirement

criteria defined by the user in SUNRISE DF UI.

It is expected individual SCDBs to consume content provided in this request call, perform

search in the database and provide information in defined output format.

Use Cases

• The user creates a query by using Search UI (Frontend component) and executes.

Query Manager receives query selection from user via frontend-backend

communication. Query Manager converts data framework internal data to OpenLabel

D6.3 First European Test Case Library | 67

format. Generated OpenLabel content is sent to databases that are onboarded to

SUNRISE DF.

HTTP Method

HTTP POST

Headers

Header Description

Content-Type application/json

Accept application/json

X-API-Key Optional API key for authentication

Authorization Optional OAuth2 Bearer token

Expected Behavior

Input Validation:

Query Manager will have a validator to ensure that the generated OpenLabel content is valid

against its schema. The same validation can also be applied by SCDBs while consuming

request.

Business Logic:

• The query provided by Query Manager will contain set of taxonomy tags with their

included / excluded subset. SCDBs must return scenarios that included tags are linked

and excluded tags are not linked.

• The scenario might have more ODD element links than it is requested in the query.

Scenario must be considered as suitable if it includes or excludes the tags in the query.

Dependencies

There is no SUNRISE DF related dependency defined for this endpoint.

D6.3 First European Test Case Library | 68

Response Requirements

Expected outputs

The Query Manager expects a custom JSON content to be provided by SCDBs. This model

contains scenario meta data, parameter info, etc. The list of content and its data model is

presented in the appendix section with examples.

It is expected that SCDB might not have all the information required by SUNRISE DF. Each

field in the data model is marked as required or optional. SCDBs can skip the optional

information if unavailable.

Status Codes

• 200: OK - The list of scenarios returned

• 400: Bad Request – Request is not formed correctly

• 401: Unauthorized – Request does not contain proper authorization

• 404: Not Found – Requested endpoint does not exist

• 429: Too Many Requests – Request rate is higher than SCDB can handle

• 503: Service Unavailable – Service / Endpoint is temporarily unavailable

Error Handling

Error responses should include details about the issue.

Non-Functional Requirements

Performance

There is no performance requirement defined for this endpoint.

Security (authentication)

Authentication will be inherited from SUNRISE DF’s authentication layer. Depending on the

individual SCDB, API key or token can be used.

Reliability and Availability

There is no specific reliability requirement defined for this endpoint.

For the availability, it is expected that the corresponding endpoint to be available at all times

in individual SCDB side.

Download Scenarios - /getScenarioPackage

Endpoint Objective

This endpoint is used for downloading scenarios as OpenSCENARIO packages.

D6.3 First European Test Case Library | 69

It is expected individual SCDBs to use scenario related info in the request and provide

scenario packages accordingly.

Use Cases

• Concrete Scenario Download: The user selects scenario and clicks on download

scenario on SUNRISE DF UI. SUNRISE DF creates download request (with Scenario

ID, package content, scenario type and parameter values) and calls relevant SCDB

API. SCDB consumes this request and provides a scenario package where only one

OpenSCENARIO file is present.

• Logical Scenario Download: The user selects scenario and clicks on download

scenario on SUNRISE DF UI. SUNRISE DF creates download request (with Scenario

ID, package content, scenario type and parameter values) and calls relevant SCDB

API. SCDB consumes this request and provides a scenario package where a logical

OpenSCENARIO file and its distribution file are present.

HTTP Method

HTTP POST

Headers

Header Description

Content-Type application/json

Accept application/json

X-API-Key Optional API key for authentication

Authorization Optional OAuth2 Bearer token

Expected Behavior

Input Validation:

A custom request form will be created for download scenarios endpoint. Its schema will be

shared in appendix. SCDBs can perform their own validation against this schema.

Business Logic:

A download request MAY contain one or more scenarios.

D6.3 First European Test Case Library | 70

SCDB endpoints are expected to accept a JSON array of scenario requests in a single API

call, enabling batch downloads. Each scenario is identified by its ScenarioId and associated

metadata. This reduces the number of API calls required for multi-scenario downloads.

Note: In the current SUNRISE implementation (July 2025), the backend sends one scenario

id per request to each SCDB host, processing multiple scenarios in a loop on the backend.

However, the request schema and endpoint design already support request for multiple

scenarios. Future SUNRISE versions may switch to sending the requests containing more

than one scenario. SCDB hosts must ensure they support receiving and processing arrays of

scenario requests as defined in the schema.

Dependencies:

• The request content of this endpoint will contain scenario IDs from the query results.

Response Requirements

Expected Outputs

The download scenario expects an OpenSCENARIO (OSC) content package to be provided

by SCDBs. This package may contain the files defined in Table 1.

Table 1: OpenSCENARIO package content

File Name / Type Description Required / By

request

OpenSCENARIO

[.xosc]

Base OpenSCENARIO file Required

OpenSCENARIO

Distribution File [.xosc]

OpenSCENARIO file that

contains parameter

distributions

By request

OpenDRIVE [.xodr] OpenDRIVE file linked with

OSC

Required

Scene Graph File

[.osgb, .opt.osgb, .ive,

.fbx, etc.]

Scene Graph file linked with

ODR

By request

Required files must always exist in the packages where “by request” ones must be provided

when requested in the call.

D6.3 First European Test Case Library | 71

The SCDB returns the scenario package as a binary ZIP archive. To support JSON-based

data exchange and compatibility with web protocols, the ZIP file is encoded as a Base64 string

in response. The frontend is responsible for decoding the Base64 data back into binary form

to reconstruct the ZIP file for download. This mechanism allows users to download multiple

scenario packages in one operation, even though each package is retrieved separately from

the SCDB.

Status Codes

• 200: OK - The scenario package is returned

• 400: Bad Request – Request is not formed correctly

• 401: Unauthorized – Request does not contain proper authorization

• 404: Not Found – Requested scenario does not exist

• 429: Too Many Requests – Request rate is higher than SCDB can handle

• 503: Service Unavailable – Service / Endpoint is temporarily unavailable

Error Handling

Error responses should include details about the issue

Non-Functional Requirements

Performance

There is no performance requirement defined for this endpoint.

Security (authentication)

Authentication will be inherited from SUNRISE DF’s authentication layer. Depending on the

individual SCDB, API key or token can be used.

Reliability and Availability

There is no specific reliability requirement defined for this endpoint.

For the availability, it is expected that the corresponding endpoint to always be available on

the individual SCDB side.

D6.3 First European Test Case Library | 72

ANNEX 3. DATA MODELS FOR SUNRISE DF

TABLES

This annex provides a detailed explanation of the data model tables utilized within the

SUNRISE AWS environment in the DynamoDB service. It includes comprehensive

descriptions of each attribute, outlining their type and (sub)structure, to support a thorough

understanding of the system's data architecture.

SCDB – Data Model

Table 2 : Data model for SCDB table

Attribute Type Sub-structure Description

Name

string

The unique name of the

Scenario Database.

description string

A brief summary of the

SCDB's purpose or content.

securitySchem

a

json

JSON object defining the

security and authentication

method (e.g., OAuth2, API

Key).

serverUrl string

The base URL for the

SCDB's server.

apiEndpoint ApiEndpoi

nts

healthCheck: json

validateUserConnection:

json

getScenarioList: json

getScenarioPackage:

json

getSCDBInformation:

json

Defines the specific API

endpoints for actions like

health checks and data

retrieval.

httpBearer HTTPBear

er

getToken: json Configuration for obtaining

an HTTP Bearer token.

D6.3 First European Test Case Library | 73

oauth2Params OAuth2Var

iables

clientId: string

tokenEndpoint: string

domainUrl: string

refreshToken: string

Stores the specific

parameters required for the

OAuth2 authorization flow.

userSCDBCon

nections

hasMany Relation to

UserSCDBConnection

A link to all user connections

associated with this SCDB.

UserSCDBConnection – Data Model

Table 3: Data model for UserSCDBConnection table

Attribute Type Sub-structure Description

oauth2Token string

The user's OAuth2 access

token for the SCDB.

oauth2Params customType refreshToken: string

scope: string

type: string

expiresIn: integer

createdAt: string

Stores details about the

OAuth2 token, such as its

scope, type, and expiration.

apiKey string

The user's API key for

authentication, if used by

the SCDB.

bearerToken string

The user's bearer token for

authentication, if used by

the SCDB.

bearerTokenEx

piration

string

The expiration timestamp

for the bearer token.

D6.3 First European Test Case Library | 74

owner string

The unique ID of the user

who owns this connection

record.

scdbId id

The foreign key ID that links

this record to a specific

SCDB.

scdb belongsTo Relation to SCDB Establishes a relationship

from this connection back to

the parent SCDB.

QueryManagerQuery – Data Model

Table 4: Data model for QueryManagerQuery table

Attribute Type Description

ModelId string The unique identifier for the query, which serves as the

primary key (e.g., QUE-123456).

Name string A user-friendly name for the query.

ScenarioDatabase string[] An array of SCDB names that this query will target.

Odd json A JSON object that defines the Operational Design

Domain (ODD) for the query.

Requirement json A JSON object that defines the specific requirements the

query must satisfy.

CreateDate string The timestamp marking when the query was first created.

ModifyDate string The timestamp marking the last time the query was

modified.

owner string The unique ID of the user who created and owns this

query.

D6.3 First European Test Case Library | 75

UserNotification – Data Model

Table 5 : Data model for UserNotification table

Attribute Type Description

userId id The unique ID of the user who should receive the

notification.

type string The category of the notification (e.g., 'alert', 'info',

'update').

message string The actual content or body of the notification message.

isRead boolean A flag (true or false) to track if the user has read the

notification. Defaults to false.

owner string The unique ID of the user who owns this notification

record.

