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Abstract— Conducting extensive recording campaigns to
asses the safety of newly developed Automated Driving Systems
(ADS) or perception algorithms has been proved to be a costly
and time consuming process. This is one of the reasons why
the automotive industry is adopting the scenario-based testing
methodology, to verify and validate the safety of the devel-
oped ADS in their expected operating domain. The exterior
perception system is the first component in the sense-plan-
act process of Connected Cooperative and Automated Vehicles
(CCAVs). In this context, high-fidelity simulation engines are
used to replicate sensor setups at reduced cost and higher
scalability than driving and capturing data from real sensors.
The use of logical automotive scenario descriptions allows
defining certain parameter ranges, contexts and actions to
execute simulations that fulfill the desired conditions. This
work proposes a methodology for generating synthetic labelled
datasets to test and validate automotive perception systems
using logical scenario files. Decoupling the desired sensor setup
from the simulation allows reproduction and testing the same
situation under different sensor setups and conditions. We
implement the methodology to validate three 3D LiDAR-based
object detectors in three different sensor setups. The generated
sample dataset will be made public here1.

I. INTRODUCTION

The automotive sector is undergoing constant change to
achieve autonomous driving. Nowadays, vehicles rely on a
wide variety of sensors, actuators, algorithms, and machine
learning systems that operate in real time for a multitude
of automated driving systems (ADS). One of the key com-
ponents of modern vehicles is their perception system. The
perception system of a vehicle is generally composed of
a combination of sensors, including cameras, LiDARs, or
radars. This system aids the vehicle in understanding its local
environment, and its proper functioning is critical for the
dynamic driving task (DDT) of the ego-vehicle and the future
of Connected Cooperative and Automated Vehicles (CCAVs)
and C-ITS Day2+ services, where perception system data can
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be transmitted via Vehicle-to-Everything (V2X) using ETSI
CPM [1].

Traditionally, real world recording campaigns have been
conducted to create datasets to test the functionality of
various autonomous driving systems or to train machine
learning models, including perception systems. This has led
to multiple open-source datasets with terabytes of automotive
labelled data from different sensor types and setups, some of
the most popular datasets include NuScenes [2], Waymo [3]
or KITTI [4], that can be considered a pioneer dataset in the
field. However, as demonstrated in [5], hundreds of millions
or even billions of kilometers are needed to prove that an
autonomous driving function performs better than humans in
terms of fatalities and injuries, which is almost impossible
to achieve due to the time and cost limitations of performing
such a recording campaign. Nonetheless, even if that amount
of data is recorded, most of the captured data would be
repetitive (i.e., straight driving on a highway) and would need
to be processed to extract relevant situations. As a result,
the concept of scenario-based testing (SBT) proposed in
ISO26262 [6] and the recently published ISO 21448 [7] that
focuses on the Safety of the Intended Functionality (SOTIF)
is the currently used methodology in the automotive field to
prove the safety of ADS. This approach aims to reduce the
required amount of data by testing an ADS under relevant
scenarios. Even using SBT, reproducing certain situations
in a real environment may be infeasible, not only for the
implicit risk in reproducing certain maneouvres, but also for
the high cost involved in performing such tests. These are
the main reasons why usually ADS validation is combined
with virtual testing using high-fidelity simulation engines, as
can be seen in the multiple synthetic datasets replicating real
vehicle sensor setups [8]–[11]. This allows a complementary
testing and validation phase at a reduced cost and better
scalability.

During this work, when we use the term scenario, it should
be understood as the definition provided in [12]: ”A scenario
is a quantitative description of the relevant characteristics
and activities and/or goals of the ego vehicle(s), the static
environment, the dynamic environment, and all events that
are relevant to the ego vehicle(s) within the time interval
between the first and the last relevant event”. Scenarios
have been categorised into different types depending on their
abstraction level. In the PEGASUS2 project, three levels of
abstraction were introduced [13], classifying scenarios into

2www.pegasusprojekt.de/en
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functional, logical and concrete scenarios. Functional scenar-
ios would correspond to a human-readable description using
natural language of a given scenario; logical scenarios would
include parameter ranges and relations between the different
entities of a given scenario under a descriptive format; and
concrete scenarios would be derived from logical scenarios
by assigning fixed values to the defined the parameter ranges.
In [14] an additional type of scenario is introduced, by adding
abstract scenario types as a formalised machine-readable
description of a scenario that would correspond to the second
level of abstraction after functional scenarios.

The following points are covered in this paper: 1) propose
a generic methodology to generate synthetic datasets for
perception testing using logical scenario files, 2) implement
a proof of concept of the proposed methodology using open
source technologies and automotive standards and 3) test the
proposed methodology to analyse the performance of 3D
perception models under different scenarios and sensor se-
tups. The rest of the paper is organised as follows: Section II
provides background of the main blocks of the methodology,
Section III includes a proof of concept implementation of
the presented methodology using open-source technologies,
Section IV takes advantage of the presented methodology
from the point of view of a test engineer to test a 3D
perception system under different sensor setups and Section
V concludes the paper.

II. DATA GENERATION METHODOLOGY

The main blocks of the proposed methodology can be
seen in Fig. 1, which will be explained in the following
subsections. The first input of this methodology consists of
logical scenario description files, which are used as an input
to generate concrete scenarios for its later simulation. These
simulations can be replayed in a deterministic manner for
open-loop simulations, which allows loading different sensor

setups in the exact same virtual scenario but also allowing
to modify certain conditions of the simulation (i.e., weather
conditions). Finally, the methodology generates a labelled
dataset with the raw sensor data that can be used to test
perception systems.

A. Scenario Generation

Scenario generation consists in the process of generating
concrete scenarios from logical scenario descriptions. These
techniques have usually been classified into two types of
methods [15]; data-driven techniques [16], which analyse
traffic data or accident databases to infer relevant scenarios,
and expert knowledge-driven techniques, where scenarios
are carefully analysed and defined by experts. In [17], they
perform a systematic literature review in scenario generation
techniques and propose three new category types as not
all the current methods can be classified correctly in the
initial binary classification. The three new categories include
random scenarios, in which parameters defining the scenario
are randomly sampled; combinational scenario generation
methods, in which scenarios are decomposed into atomic
pieces that can be combined; and optimization-based sce-
nario parameter selection and evaluation techniques. This
methodology is not dependant on the selected scenario
parameter method selected, however, the initial input of the
methodology depends on the logical scenario description
files. The ASAM OpenSCENARIO XML3 format has been
the main scenario description format used in the automotive
industry. The newest versions of the standard allows defining
scenarios at logical and concrete levels of abstraction. The
newest ASAM OpenSCENARIO DSL4 format defines a

3https://www.asam.net/standards/detail/
openscenario-xml/

4https://www.asam.net/standards/detail/
openscenario-dsl/

Fig. 1. Proposed synthetic dataset generation methodology using logical scenarios.
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domain-specific programming language to describe scenarios
at all the previously presented levels of abstraction. Similarly,
the three available versions of Scenic [18]–[20] define not
only a logical scenario description language but also a com-
piler for the concretization step involved in scenario genera-
tion compatible with multiple automotive simulators. Lastly,
[21] presents a two-level of abstraction Scenario Descrip-
tion Language (SDL) where the first level corresponds to
functional scenarios and the second level is compatible with
logical and concrete levels of abstraction. These scenario
description files are usually tied to road topology description
files to define the road network of a given scenario. Both
OpenSCENARIO and Scenic are compatible with ASAM
OpenDRIVE 5, a standardised definition file for defining road
networks. Selecting a scenario description format to cover
the static environment (road data) and dynamic environment
(actor definition and behaviour) is crucial for the simulation
step of the methodology, as not all automotive simulation
engines are compatible or provide tools to execute certain
scenario formats.

B. Simulation Engine

Simulation engines play a crucial role in the development
and testing of ADS, providing a synthetic environment where
various scenarios can be generated and evaluated. Among the
existing simulation engines, Unreal Engine and Unity are
prominent examples. These engines offer powerful tools for
creating highly realistic environments with detailed graphics,
physics simulations, and interactive elements. They have
been widely used in the gaming industry and have also found
applications in autonomous driving research by enabling
the simulation of driving environments, including sensor
simulation, vehicle dynamics, and physical 3D environments.

In the automotive open-source simulation domain,
CARLA [22] and LGSVL [23] have emerged as prominent
tools tailored for autonomous driving research, based on
Unreal and Unity respectively. Leveraging the robust ca-
pabilities of their base simulation engines, these simulators
offer a customizable platform to explore autonomous vehicle
technologies, including support for various sensor models,
vehicle dynamics, and environmental conditions. Equipped
with a comprehensive suite of sensors such as cameras,
LiDAR, and radars, both platforms facilitate thorough data
collection and analysis, enabling researchers to improve their
ADS iteratively. However, one of the possible drawbacks
of these automotive simulators is that they are not directly
compatible with standard scenario formats. CARLA provides
the ScenarioRunner6 tool which has a great level of support
with the two OpenSCENARIO versions, however, it is not
yet fully compatible with them, which can cause problems
during the simulation of fully compliant OpenSCENARIO
files. Other alternatives such as ESMINI7, provide a way
of graphically validating OpenSCENARIO XML files by

5https://www.asam.net/standards/detail/opendrive/
6https://github.com/carla-simulator/scenario_

runner
7https://github.com/esmini/esmini

visualizing the behaviour of the defined scenario, but is not
meant for high-fidelity simulation. The following points need
to be addressed before choosing a simulation engine:

• Select a simulation engine that covers the simulation
needs of the perception system under test, including, the
quality of the virtual environment and that the desired
sensors can be simulated.

• Ensure that the simulation engine is compatible or can
reproduce the selected scenario description formats.

C. Sensor Configuration

Regardless of the simulation engine, it is crucial to define
the sensors’ setup separately. This includes specifying their
intrinsic parameters, which relate to their internal geometric
configuration, in the case of cameras, these would include
parameters of the camera sensors (e.g. focal length, distortion
coefficients, etc.). It also involves determining their pose in
terms of translation and rotation relative to a reference frame,
such as the ego-vehicle rear axle projected to the ground
plane (as specified in ISO-8855). Keeping a well-defined
description of sensors and their characteristics enables the
replication of different scenario setups and conditions using
the same configurations which is a key component of any
SBT pipeline used to evaluate perception systems. This also
opens the possibility of performing optimal configuration
searches on different scenarios.

The absence of a widely accepted standard for configuring
sensor setups results in each database or pipeline devising
its own way to define them. For example, in the Robotic
Operating System (ROS), camera sensor poses are described
using a transformation tree, and their intrinsic parameters
are stored as a CameraInfo ROS message. Datasets such as
KITTI simply lists both intrinsic and extrinsic parameters
in a plain text file, NuScenes provides a relational database
where they store the extrinsic and intrinsic values of the
sensors for each recording and the Waymo dataset stores
this data as protobuf files. To tackle this inconsistency,
ASAM has introduced the ASAM OpenLABEL8 standard,
which provides a format and guidelines for labelling multi-
sensor data, from the raw sensor data to object level and
tag annotations, that facilitates the interfacing between real
world and virtual testing environments.

D. Labelled Dataset

There are several open-source datasets of automotive la-
belled data available with several terabytes of sensor data,
recorded both in the real world and in virtual environ-
ments on high-fidelity automotive simulation software. These
datasets largely vary in terms of the sensor setups and
scenarios recorded.

Unfortunately, there is no widely accepted standard data
format for these kinds of datasets. Each of them utilises their
own naming conventions, coordinate system frames, etc. For-
mat inconsistencies like these naturally hinder the advance of
the state of the art due to having to deal with different parsing

8https://www.asam.net/standards/detail/openlabel/
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strategies, and so, there has been some effort in defining a
standardised format for automotive datasets. For example,
the OMEGA format which was developed in the context
of the VVM project 9 and aims to be an standard format
for storing reference and perception data. Another alternative
is the previously introduced ASAM OpenLABEL standard,
whose schema incorporates a large variety of annotation
capabilities, such as multi-sensor object level annotations and
scenario tagging.

III. IMPLEMENTATION

In this work, we have implemented a proof of concept of
this methodology selecting a set of open-source technologies
and standard annotation formats.

A. Scenario generation

For the scenario generation step, the second version
of the Scenic [19] description language has been used.
By defining logical scenario files using the syntax of the
Scenic programming language, rules, parameter ranges and
requirements can be set not only to define the desired road
characteristics but also to define the parameter ranges for
each actor in the scenario and their desired behaviour. One
of the main advantages of Scenic is that it does not only
provide the syntax for defining logical scenarios, but also
deals with the parameter concretization step by sampling
values and checking that they fulfil the desired parameter
ranges and conditions. Scenic is also compatible with the
ASAM OpenDRIVE10 standard, widely used in the industry
as a file description format to define road-networks with
detail. Thus, the use of Scenic covers entirely the scenario
generation block explained in Section II of the proposed
methodology. Scenic is compatible with multiple simulation
engines, including automotive simulators such as CARLA
[22] or simulators oriented to robotics such as Webots [24].

B. Simulation engine

For our simulation engine, we have chosen CARLA
[22], one of the main open-source automotive simulation
engines based on Unreal Engine 4 that provides high-fidelity
rendering. CARLA provides recording capabilities, which
allows to register all the events and trajectories from all the
actors and objects in a scenario in a recording file for its
later replay. This feature enables one of the key points of
the proposed methodology, allowing to decouple the target
sensor setup from the simulation, being able to reproduce the
same scenario with different sensor setups if needed. CARLA
provides a Python API that can be used to access the state
of all the objects of the simulation but also to spawn, attach,
and retrieve sensors to the desired actor in the simulation.
Among the sensors that can be simulated in CARLA we
can find radars, LiDARs, IMUs, GNSSs and different types
of cameras including RGB, Depth or Semantic segmentation
cameras.

9https://www.vvm-projekt.de
10https://www.asam.net/standards/detail/opendrive/

C. Sensor configuration and dataset format

For setting up our sensors configurations, we have chosen
the ASAM OpenLABEL format. This format is presented
in a JSON file following a standardised structure with a
JSON schema, making it easily interpretable by various
tools and applications. Additionally, the OpenLABEL format
facilitates scenario labelling by annotating contextual ele-
ments such as weather conditions, actions, or various objects
present within the scene. To work on the OpenLABEL format
we use the Video Content Description (VCD11) Python
library [25]. This package enables an easy interaction with
the OpenLABEL format and includes several useful utili-
ties, such as performing coordinate frames transformations
between sensors and annotated objects, and handle most
of the workload from odometry changes. Concerning our
use case, some common road-object classes are considered
such as pedestrians, cars, trucks, buses, bicycles, and mo-
torbikes. Moreover, apart from their class name and 3D
position cuboid, both delta velocity and delta acceleration
are annotated along with their respective vector magnitudes.

IV. EXPERIMENTS

In this section, we have generated a synthetic dataset fol-
lowing our proposed methodology. The dataset is composed
of concrete scenarios generated from three different logical
scenario definitions. The synthetic dataset has been used to
test the performance of various state of the art LiDAR based
3D object detection models.

A. Selected Scenarios

We have selected three different logical scenarios from
the provided NHTSA Pre-Crash scenarios [26] available in
Scenic. An overview of the three logical scenario descrip-
tions can be seen in Fig. 2.

The first scenario involves three actors, the ego vehicle
and another vehicle suddenly stopping due to a pedestrian
unexpectedly crossing the street. In the bypassing scenario,
the ego vehicle needs to perform an overtake by changing its
lane to bypass a slower vehicle. Finally, in the intersection
scenario, the ego vehicle must stop in a 4-way intersection
when another vehicle performs a left turn in the intersection.

Each logical scenario has been concretised ten times, gen-
erating a sample dataset of 30 different concrete scenarios. In
each concrete scenario not only the parameter ranges shown
in Fig. 2 have been sampled, but also the 3D models of
the actors involved in the simulations. Separating the sensor
setup from the desired concrete simulation allows to simulate
the three proposed sensor setups in a single simulation run
instead of executing the same scenario each time a new
sensor setup is needed.

B. 3D Perception system under test

With the resulting dataset, we have tested the performance
of different 3D object detector models, more specifically
PointPillars [27], Shape Signature Network (SSN) [28] and

11https://pypi.org/project/vcd/
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Fig. 2. Overview of the parameter ranges, actor behaviors and environment conditions of the three selected NHTSA Pre-Crash scenarios.

CenterPoint [29]. All the models have been trained with
labelled point cloud data from the NuScenes [2] dataset. The
labelled point clouds have been captured using a Velodyne
HDL-32 LiDAR which has 32 channels, a 360º horizontal
FOV and a vertical FOV ranging from +10º to -30º. To
evaluate these models against different sensor domains, we
test their performances in the three scenarios defined in Fig 2
using the following sensor setups:

1) Low-Density sensor: 16 Channel LiDAR with a ver-
tical Field Of View (FOV) of 15º to -15º.

2) Ideal sensor: 32 Channel LiDAR with a vertical FOV
of 10º to -30º.

3) High-Density sensor: 64 Channel LiDAR with a
vertical FOV of 10º to -30º.

In our evaluation, we apply the domain gap mitigation
strategy proposed in [30] and calculate the true positive
rate for each model against the dynamic objects defined
in the scenarios. Based on the default evaluation metric of
NuScenes [2], we consider a detection to be a true positive
if it is located within a distance threshold of 0.5 meters of
its ground truth, the obtained results can be seen in Table I.

For the car class, our analysis demonstrates that models
achieve the best results when tested on the ideal sensor across
all the defined logical scenarios. In this case, the PointPillars
model obtains the best results for the bypassing and intersec-
tion scenarios, while SSN marginally outperforms the other
two models in the pedestrian scenario.

In the case of PointPillars and SSN we can see how the

TABLE I
TRUE POSITIVE RATES OF POINTPILLARS (PP), SHAPE SIGNATURE

NETWORK (SSN), AND CENTERPOINT (CP) ACROSS VARIOUS SENSOR

SETUPS AND SCENARIOS FOR THE ’CAR’ AND ’PEDESTRIAN’ CLASSES

Class: Car
Sensor Low-Density Ideal High-Density
Model PP SSN CP PP SSN CP PP SSN CP

bypassing 0.81 0.76 0.69 0.90 0.80 0.73 0.76 0.48 0.71
intersection 0.87 0.86 0.73 0.93 0.92 0.79 0.81 0.61 0.77
pedestrian 0.67 0.67 0.68 0.87 0.88 0.87 0.61 0.47 0.83

Class: Pedestrian
Sensor Low-Density Ideal High-Density
Model PP SSN CP PP SSN CP PP SSN CP

pedestrian 0.55 0.48 0.27 0.51 0.35 0.18 0.46 0.15 0.11

models obtain better results using the low-density sensor
when compared to the high-density sensor. This counter-
intuitive effect is more accentuated in SSN and we could
hypothesize that these models fail to generalize in denser
point clouds. This is not the case for the CenterPoint model,
where the high-density sensor obtains better results than its
low-density counterpart proving that it generalizes better in
denser point clouds but still achieving the best results using
the ideal sensor configuration. For the pedestrian class, we
can see that all models obtained the best results using the
low-density sensor. In this case, PointPillars also obtains the
best results and is the most consistent model across all sensor
configurations. In the case of SSN and CenterPoint, we can
see a severe model performance degradation with the higher-
density model. Obtaining better results with the low-density
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sensor was not an expected behaviour and showcases how the
methodology can aid in identifying problems when testing
perception systems. This behaviour may be caused by the
different FOV configuration of the low density sensor being
benefitial in the pedestrian scenario or by a domain gap of
the synthetic data, however, it should be further analysed to
draw a clear conclusion.

V. CONCLUSIONS

Scenario-based testing is a current trend in the automo-
tive industry and further work is necessary, not only in
methodologies to generate synthetic data, but also in using
and proposing standardised data formats. We have presented
an end-to-end methodology to generate labelled datasets for
perception testing using logical scenario file descriptions and
automotive standards. Thanks to decoupling the scenario
simulation from the sensor configuration, the exact same
scenarios can be tested under different sensor setups and
scenario conditions (i.e. weather conditions) in open-loop
simulation. This can help to identify sensor domain adap-
tation problems or to test the expected effectiveness of per-
ception systems against unknown scenarios. This statement
has been proved by testing the performance of three state-
of-the-art lidar-based object detectors against three different
sensor setups in different automotive scenarios.
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