
Formalizing Operational Design Domains
with the Pkl Language

Martin Skoglund
RISE Research Institutes of Sweden

Bor̊as, Sweden
martin.skoglund@ri.se

Fredrik Warg
RISE Research Institutes of Sweden

Bor̊as, Sweden
fredrik.warg@ri.se

Anders Thorsén
RISE Research Institutes of Sweden

Bor̊as, Sweden
anders.thorsen@ri.se

Abstract—The deployment of automated functions that can
operate without direct human supervision has changed safety
evaluation in domains seeking higher levels of automation.
Unlike conventional systems that rely on human operators, these
functions require new assessment frameworks to demonstrate
that they do not introduce unacceptable risks under real-world
conditions. To make a convincing safety claim, the developer
must present a thorough justification argument, supported by
evidence, that a function is free from unreasonable risk when
operated in its intended context. The key concept relevant to
the presented work is the intended context, often captured
by an Operational Design Domain specification (ODD) spec-
ification. ODD formalization is challenging due to the need
to maintain flexibility in adopting diverse specification formats
while preserving consistency and traceability and integrating
seamlessly into the development, validation, and assessment.
This paper presents a way to formalize an ODD in the Pkl
language, addressing central challenges in specifying ODDs while
improving usability through specialized configuration language
features. The approach is illustrated with an automotive example
but can be broadly applied to ensure rigorous assessments of
operational contexts.

Index Terms—Operational design domain, Automated func-
tions, Automated driving systems, Safety assurance, Assessment,
Safety, Security

I. Introduction

Ensuring the safety of automated functions remains a key
challenge for widespread deployment, as these systems
must reliably manage a broad spectrum of operating
conditions. The complete set of situations an automated
function must handle safely can be framed by all dynamic
interactions in the operating context, i.e., all permutations
over all conceivable interaction scenarios in the complete
intended operational design domain (ODD). This often
involves truncating the long tail of increasingly improb-
able situations where the likelihood of omitted hazardous
situations posing an unreasonable risk is sufficiently low.

We acknowledge the support of the Swedish Knowledge Founda-
tion via the industrial doctoral school RELIANT, grant nr: 20220130.
This research was carried out within the SUNRISE project and
is funded by the European Union’s Horizon Europe Research and
Innovation Actions under grant agreement No.101069573. However,
views and opinions expressed are those of the author(s) only and do
not necessarily reflect those of the European Union or the European
Union’s Horizon Europe Research and Innovation Actions.

Building on scenario-based testing practices specific to
the automotive domain from which the example ODD
taxonomy originates, ISO 34501 [1] defines the ODD as
”the operating conditions under which a given driving au-
tomation system or feature thereof is specifically designed
to function, including but not limited to, environmental,
geographical, and time-of-day restrictions and/or the req-
uisite presence or absence of specific traffic or roadway
characteristics.”

Validating the vast set of scenarios in context becomes
increasingly difficult at higher levels of automation, requir-
ing exploration of growing test spaces to provide evidence
to substantiate the safety claims. In the automotive field,
this is commonly called the ”billion-miles”challenge [2] but
extends to any domain with automation ambitions.

An ODD isolates a subset of driving conditions under
which an automated function must be assured to have
safe operations. A formally defined ODD helps developers
streamline test coverage analysis, validation, and assess-
ment by specifying a subset of driving conditions within
which the system’s safe operation must be assured. By
clarifying the ODD scope, test scenario generation and
other validation activities can be systematically directed at
the contexts of interest. The total physical testing needed
can be significantly reduced, guiding the solution to the
”billion-mile” problem.

By clearly specifying the boundaries and conditions under
which an automated function operates, the ODD helps
to narrow the scenario space to the essential contexts.
By defining the ODD, we gain a scope that guides the
test scenario generation, simulation, and other valida-
tion methods. Rather than attempting to account for
an infinite range of real-world conditions, we establish a
well-defined set of parameters that can be systematically
evaluated and refined for both development teams and
safety assessors. As a result, the total physical testing
needed can be substantially reduced—moving towards a
solution to the scale of the ”billion-mile” problem.

Although existing taxonomies and standards (e.g., ISO
34503 and DOT HS 812 623 [3], [4]) offer structured ap-



proaches to defining ODDs, they typically rely on natural
language and do not provide a standardized exchange
mechanism. These limitations make it challenging to in-
tegrate them into automated testing toolchains. While
standardizing ODD semantics is essential, the work here
focuses on creating an infrastructure that optimizes us-
ability, drawing on objectives that appear in draft or con-
ceptual work on standardizing ODDs and test toolchain
integration, i.e., ASAM OpenODD [5] and ASAM Open
Test Specification [6].

This work does not seek to develop a new ODD taxonomy.
Instead, it introduces a formalization and a configuration-
based mechanism for specifying and exchanging ODDs.
The presented approach is illustrated using ISO 34503 as
taxonomy and automotive applications as representative
use cases without constraining the method to those par-
ticular examples. The formalization leverages the Pkl lan-
guage [7] to address the core challenges of ODD specifica-
tion, focusing on flexibility, extensibility, and traceability.
By integrating these features, the presented contribution
facilitates creating and managing ODD definitions and
ensures that tests can be readily linked to operational
conditions throughout development, validation, and as-
sessment.

II. Background and Related Work

Standardizing ODD definitions is essential for safety as-
surance in automated driving systems. Several standards,
such as ISO 34503 [3] and BSI PAS 1883 [8], as well as
ongoing projects like ASAM OpenODD [5] and Open-
TestSpecification [6], respond to this need by providing
structured approaches to describe ODDs. Among these
efforts, interoperability remains a critical objective. How-
ever, these undertakings are evolving, but there is still
limited guidance on fully integrating an ODD definition
process with robust test workflows or real-time monitor-
ing [9].

Prior studies have explored various strategies for defin-
ing and applying ODDs across different contexts. Lee et
al. [10] propose a statistical approach that identifies an
ODD by mapping geographic regions with acceptable risk
levels, enabling a data-driven method of boundary delin-
eation. Erz et al. [11] focus on ontology-based techniques
to reconcile ODD definitions with vehicle architectures
and scenario-based testing, providing structured cross-
referencing throughout system development. Sun et al. [12]
introduce formal specification methods to manage ODD
extraction during automated driving system development.
Further work looks at the role of ODD metrics in evalu-
ating system maturity and usability [13], as well as risk-
based scenario coverage [14], illustrating the breadth of
ongoing efforts to refine ODDs for comprehensive safety
assurance. The relevant literature primarily addresses the
content of ODDs or interactions with the surrounding
environment rather than a generalized formalization. To

verify the practicality of our approach and ensure that it
builds upon the existing body of work, we aim to define a
set of evaluation criteria for our proposed solution.

Pkl, pronounced ”Pickle,” is a configuration-as-code lan-
guage developed by Apple, which provides robust vali-
dation and tooling capabilities [7]. It can be used as a
command-line tool, a software library, or a build plug-in,
making it adaptable to a wide range of use cases. It is
designed to scale smoothly from small, simple, and ad-
hoc tasks to large, complex, and recurring configuration
challenges. In this work’s context, Pkl aims primarily at
ensuring consistent configurations across multiple devel-
opment environments, emphasizing automation and inte-
gration into DevOps pipelines. It was developed to handle
the product line configuration of Apple smartphones.

At its core, Pkl implements a special-purpose configu-
ration language that combines the benefits of a static
configuration format with the flexibility of a general-
purpose programming language. This hybrid approach is
well-suited for generating static configurations, such as
those formatted in JSON, YAML, or other structured
data formats. By leveraging Pkl, users can automate the
creation, validation, and maintenance of configurations for
tools and systems, ensuring consistency and scalability
across diverse applications.

In the present work, ISO 34503 [3] serves as the basis for
defining the ODD, aligning with international standards
and offering a consistent way to specify ODD attributes
and boundaries in the automotive domain. Several other
practices have been identified to have an impact on how
to treat the formalization of the ODD; ISO 29119 [15]
provides a comprehensive software and system testing
framework, covering all aspects of the testing process
and offering clear guidelines for designing, executing, and
documenting tests. The functional safety standard ISO
26262 [16] addresses functional safety in the automotive
domain by guiding hazard analysis and risk assessment to
the intended context of ODD. Safety of the Intended Func-
tionality (SOTIF) ISO 21448 [17] extends safety consider-
ations beyond functional safety, accounting for functional
insufficiencies in the implementation to deal with real-
world operating conditions. Together, the practices inform
the formalization design of ODD interactions that should
be considered in test case allocation, test environment
setup, and test data requirements, bridging the conceptual
design of the ODD with practical testing and assessment
applications.

We extend the ODD definition through a formalization
using the Pkl framework. Formalization here means rep-
resenting the ODD’s attributes, constraints, and relation-
ships in a machine-readable manner that supports auto-
mated querying and validation and enables integration
into existing development toolchains. Our goal is flexibil-
ity and traceability in specifying and modifying ODDs.



The approach aims to facilitate direct linkage between
ODD descriptions and verification or assessment processes,
reducing ambiguity while supporting systematic evidence
gathering for safety assurance [18].

III. Evaluation criteria for an ODD
formalization

The following criteria are defined based on insights ob-
tained from Section II and further enriched by discussions
with interaction experts in the assessment field, ensuring
a solid foundation for analysis. They serve as a basis for
judging whether the attempt at formalization is valuable.
The evaluation criteria are semi-domain-specific but can
be reformulated to become relevant to any domain. For
example, Tonk et al. [19] demonstrated that ODD prin-
ciples can be adapted for remote driving in the railway
domain, thus illustrating how the concept extends beyond
automotive use cases.

The following core criteria were identified to enable a
flexible and efficient use of ODDs:

CC1 Abstraction of the complex structure to enable treat-
ment of specific aspects under consideration.

CC2 Templating reduces duplication and maintains inter-
nal consistency, thus aiding flexibility and reducing
mistakes while accommodating probabilistic quali-
fiers.

CC3 Validation can parse and check validity automatically.
The solution should incorporate conditional state-
ments to precisely express constraints or dependencies
and support inclusive classification for each condition.

Safety artifacts like the ODD directly influence func-
tional behavior and the criteria used to evaluate that
behavior, necessitating safeguards that ensure integrity,
traceability, and control safeguards. For example, version
control should document all modifications, along with
their rationale and approvals. Validation reviews must
ensure that updates meet safety criteria and do not create
additional risks, while impact analyses assess how changes
affect system safety and compliance. These measures help
maintain the reliability of safety-critical artifacts and align
them with relevant safety standards.

The following safety criteria related to artifacts according
to ISO 26262-8:2018 [16]:

SC1 Integrity provides measures that keep the ODDs
corruption-free, like unintended modification of at-
tributes or constraints.

SC2 Human readability to enable confirmation reviews.
ODD parameters must be expressed so relevant stake-
holders can understand, allowing for unambiguous re-
view, approval, and justification. This aligns with ISO

Fig. 1. Dynamic Test Process ISO 29119:2022, how the ODD can
integrates with the overall testing process [15].

26262’s emphasis on comprehensibility, unambiguity,
and ease of maintenance.

SC3 Specification and Management of Safety Require-
ments. Following ISO 26262-8:2018, an ODD language
must support proper safety requirement attributes:
unique identification, status tracking, criticality level,
clear scope, and allocated ownership. This includes
mechanisms for traceability back to source require-
ments and forward to derived or lower-level elements,
ensuring internal and external consistency, complete-
ness, and maintainability throughout the lifecycle.

Input criteria for the ODD are that it must accom-
modate adaptability to ensure maintainability. This in-
cludes supporting a flexible architecture for communal
refinement and alignment with evolving ODD taxonomies.
Maintainability also requires that updates—whether to
the ODD itself or related taxonomies—can be efficiently
tracked, reviewed, and implemented. This ensures that
modifications remain transparent and traceable, enabling
controlled evolution without compromising consistency or
safety assurance. The output criteria for the ODD include
seamless integration with general dynamic testing frame-
works, as outlined in standards such as ISO 29119 [15].

In Fig. 1, the test specification encompasses the complete
documentation of the test design, test cases, which contain
a concrete ODD, and test procedures for a specific test
item. Suppose such details are not included in the test
plan. In that case, any additional requirements for the
test environment, which contains ODD capabilities and
test data partly connected to ODD, must also be speci-
fied. This structure ensures inherent alignment with more
specific scenario-based testing approaches, such as those in
ISO 34502 [20], and simulation-oriented frameworks, such



Fig. 2. Part of the ODD Taxonomy from ISO 34503 [3].

as those under development in the ASAM Test Specifica-
tion project. These requirements demonstrate the broader
applicability of the ODD formalization to similar contexts
or domains that rely on structured, testable operational
boundaries. It can be seen as input and output capabilities
grouped as interface criteria in the formulation of the
ODD:

IC1 Taxonomy Integration - The language must support
the integration of evolving or domain-specific tax-
onomies, ensuring compatibility and consistency in
the definitions of operational constraints.

IC2 Test Execution Enrichment - ODD descriptions
should aid in scenario-based validation by enabling
dynamic checks of whether a scenario remains within
bounds and by supporting the generation of concrete
test cases aligned with the ODD constraints.

On a side note, the permissive ODD definition described,
for instance, in the OpenODD concept paper [5] will not be
considered at this time. In general, a permissive definition
includes everything within the ODD except for explicitly
excluded elements, whereas a restrictive definition includes
only those explicitly specified elements.

A permissive ODD employs a define-by-exclusion approach
yet does not compute the set difference from a universal
set; instead, it works directly with the ODD set, resulting
in an inverse form of a restrictive ODD. Removing specific
elements from an otherwise complete set can be repli-
cated using default values and templating methods, which
characterize similar configuration elements by focusing on
their differences. Although there is no plan to adopt a
strictly permissive definition, the implementation could be
adjusted to accommodate that approach.

IV. ODD Formalization

In this section, we describe the hierarchical taxonomy in
the ISO 34503 ODD definition, illustrated in Fig. 2, using
the features of a modern configuration language, Pkl [7],
although our ODD is restrictive since parameters must be
explicitly specified.

Pkl allows modules to be split into smaller, more man-
ageable parts through imports, which can come from local

1 # Note: Template for ISO34503 ODD
2

3 @ModuleInfo { minPklVersion = "0.25.1" }
4 module ODD.ODD_template.pkl
5

6 import "dyn_template.pkl"
7 import "env_template.pkl"
8 import "scen_template.pkl"
9

10 class odd {
11 scenery : scen_template.scenery
12 environment: env_template.env
13 dynamic : dyn_template.dynamic_elements
14 }

Fig. 3. Top module for ISO 34503 ODD in Pkl.

1 # Note: Excerpt from the file scen_template.pkl
2

3 const speed_limit_global = 30.0
4

5 typealias Direction_of_travel = "right_hand_travel"
6 | "left_hand_travel"
7

8 class Lane_dimensions {
9 // Define properties related to lane dimensions

10 lane_dimension : Float (isBetween(2.7, 3.2)) = 2.7
11 // meters
12 }
13

14 class Drivable_area_lane_specification {
15 lane_dimensions: Lane_dimensions
16 lane_markings: Lane_markings
17 lane_type: Lane_type
18 direction_of_travel: Direction_of_travel
19 speed_limit : Float (isBetween(0,
20 speed_limit_global))
21 lane_usage : Boolean = true
22

23 }

Fig. 4. Example: Definition of drivable area.

or remote locations. A configurable security policy helps
control these imports, allowing complex configurations to
be refined or extended without compromising integrity.
The constructed ODD templates in Pkl can be found
in [21]. The top module is shown in Fig. 3.

A template is natively reusable; all hierarchies are pre-
served, where objects and entire modules can be defined
partially and then turned into concrete configurations
following a schema and by specifying or overriding de-
faults. Sharing these templates among teams or across
networks streamlines the creation of consistent, reusable
configurations. The version of the evaluation toolchain can
be stipulated in the template module, forcing alignment
with the feature and the configuration data. This approach
reduces duplication, enhances maintainability, and aligns
well with scenarios that require frequent updates or col-
laboration among multiple stakeholders.

In the definition of the ODD attribute Drivable Area, as



1 # Note: From the file ODD1_test.pkl importing
2 # and configuring ODD_template.pkl
3

4 import "ODD_template.pkl"
5 odd1 : ODD_template.odd = new {
6 scenery {
7 zone {
8 region_or_state = "Sweden"
9 }

10 drivable_area {
11 drivable_area_lane_specification {
12 direction_of_travel = "right_hand_travel"
13 speed_limit = 15.0
14 lane_usage = true
15 }
16 }
17 }
18 }

Fig. 5. Instantiating an ODD from the template.

shown in Fig. 4, typed objects are derived from templates,
permitting only amendment by override of existing proper-
ties rather than the creation of new ones. This setup allows
the specification of lane dimensions to be amended based
on different drivable area type. For instance, if trucks are
present in the ODD, lane width must exceed 2.6 me-
ters [22], and the dimension is enforced to fall within a
valid range with a suitable default.

While not explored in this base configuration, Pkl can
handle arbitrary elements, and there are several ways to
group elements and values, for example, as Listings, which
is an ordered, indexed collection of elements, or as values
in Mappings, which is an ordered collection indexed by
a key. Both constructions can accommodate probabilistic
qualifiers.

Only things lacking default values must be configured
when spawning a complex ODD. It is desirable to explicitly
configure parameters of particular interest or critical safety
relevance for the ODD. In the example shown in Fig. 4,
we can see that direction of travel is an enumerated class
with no default value. So, when constructing an ODD from
this template, the direction of travel must be configured
as either right hand travel or left hand travel, as shown
in the example instantiation of odd1 in Fig. 5.

Data in Pkl is not manipulated directly; when a value
is modified, it is a new value, leaving the original value
intact. This immutability feature helps reduce errors. The
evaluation of Pkl code is strictly confined to a sandbox
environment, with no external interactions except for nar-
rowly defined and controlled cases. The framework can
be initialized with automated defaults, thereby simplifying
setup. Additionally, idation enforces strict domain-specific
constraints to ensure that each parameter remains con-
sistent with the operational requirements of the defined
ODD. A more assessable representation of the data can
be obtained by exporting the configuration into a static

1 #Note Pkl can render JSON, Jsonnet,
2 #Pcf (a static subset of Pkl), (Java) Properties,
3 #Property List, XML, YAML
4

5 C:\pkl> ./pkl eval -f json .\ODD1_test.pkl
6 ...
7 drivable_area_lane_specification {
8 lane_dimensions {
9 lane_dimension = 2.8

10 }
11 lane_markings {
12 clear_lane_marking = true
13 blurred_lane_marking = false
14 no_lane_marking = false
15 temporary_lane_marking = false
16 }
17 lane_type {
18 bus_lane = false
19 traffic_lane = true
20 cyclists_lane = false
21 tram_lane = false
22 emergency_lane = false
23 shared_lane = false
24 other_special_purpose_lane = false
25 }
26 direction_of_travel = "right_hand_travel"
27 speed_limit = 15.0
28 lane_usage = true
29 }
30 ...

Fig. 6. Rendering an ODD as JSON.

Fig. 7. The rendered part of the JSON ODD, excerpt of Fig. 9,
visualized by PlantUML [23].

format such as JSON or YAML and converting it into
a tree structure diagram with the markup framework
PlantUML [23]. Given a hierarchical visualization’s clarity,
this approach results in a graphical format that is easier to
review and interpret. Fig. 6 shows how an ODD is rendered
in JSON; Fig. 7 (again an excerpt of the drivable area)
and Fig. 9 (complete ISO 34503 ODD) shows graphical
representations rendered by PlantUML. The intention is
not to present all the details but to convey a sense of the
complete structure.

If all type constraints are satisfied, the Pkl evaluator
converts the data model into an external representation



1 # Note: speed_limit_global = 30.0
2

3 C:\pkl> ./pkl eval .\ODD1_test.pkl
4

5 Type constraint `isBetween(0, speed_limit_global)`
6 violated.
7 Value: 31.0
8

9 139 | speed_limit :
10 Float (isBetween(0, speed_limit_global))
11 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12 at ODD.scen_template.pkl
13 #Drivable_area_lane_specification.speed_limit
14 (file:///C:/pkl/scen_template.pkl, line 139)

Fig. 8. Trying to generate an ODD with lane speed 31, which is
outside limits.

and terminates with a zero status code; otherwise, it
outputs an error message. Fig. 8 shows an example where
an instantiated ODD uses a speed limit outside the valid
range defined in the template.

V. Evaluation

Reducing duplication and maintaining consistency is nec-
essary to formalize an ODD flexibly and efficiently. The
following points illustrate how the approach addresses
these requirements:

• CC1 is fulfilled by applying abstractions. The efforts
can be concentrated on important aspects of the
ODD; for example, all parameters that are not in
focus can be given default values.

• CC2 is fulfilled, subdividing large ODDs into spe-
cialized modules (for example, scenery, environment,
and dynamic objects) enhances clarity and assists
distributed teams in maintaining correctness, thus
minimizing errors arising from rewriting similar ele-
ments.

• CC3 is fulfilled, robust validation mechanisms enable
automatic checks of configuration attributes using
conditional statements, numeric ranges, and enumer-
ated types.

Additional design considerations extend the approach to
feature important safety artifacts:

• SC1 is fulfilled by immutability and isolation to en-
sure unintended modifications to ODD objects cannot
happen. This design safeguards integrity.

• SC2 is partially fulfilled as the readability is satisfied
through the possibility of rendering the resulting con-
figuration in a graphical tree structure; see Fig. 7. In
addition, Pkl code is deliberately designed to match
the configuration it produces. The formalization does
not reference the taxonomy directly, and a delicate
translation step is required to maintain the traceabil-
ity and semantic meaning of parameters.

• SC3 is partially fulfilled, though native traceability
is lacking as Pkl and does not have built-in version
management. Still, its structured data model inte-
grates smoothly with external tools or version control
systems.

Finally, the approach accounts for external dependencies
and testing aspects:

• IC1 is fulfilled by aligning ODD specifications with
external ontologies and scenario-based testing. Pkl
modules are deliberately designed to meet general
configuration needs and can accommodate most ODD
requirements by definition.

• IC2 is partially addressed by providing a stable tool
for ODD and real-time generation and validation.
The language’s flexible structure allows for custom
methods. Ongoing and future work will explore these
options further, for example, by introducing mecha-
nisms for comparing ODD instances.

VI. Conclusions

The work presented here demonstrates how an ODD can
be formalized using the Pkl configuration language in a
machine-interpretable format. By evaluating key criteria
like — abstraction, templating, validation, integrity, re-
viewable, traceability, adaptability, and versatility —this
paper has shown that a Pkl-based formalization of ODDs
can fulfill the identified criteria and serve as a versatile so-
lution for different domains; an automated driving use case
exemplifies this. Additionally, the Pkl language provides
strong industrial and community backing, with a stable,
well-maintained code base and rapid feature growth; albeit
developed for other applications, the general configuration
challenges remain the same. All things considered, adopt-
ing a Pkl base for the formalization of ODDs has a strong
case.

We propose and make available [21] an approach to rep-
resenting the ODD [3] in the Pkl configuration language.
This representation is not complete nor fault-free. It is an
initial proof of concept that may evolve through collective
engagement. Its continued development relies on commu-
nal contributions and cooperative efforts, and it may gain
broader acceptance if the research community deems it
sufficiently valuable.

Future work will investigate the feasibility of using the
ODD to automate test scenario allocation, enabling the
efficient distribution of test cases to the most appropriate
virtual or physical environments. Additionally, the flexi-
bility and extensibility of the proposed solution will be
leveraged to construct an ODD tailored to the forestry
domain. Efforts will also include assessing compatibility
with the forthcoming OpenODD framework to ensure
alignment with emerging ASAM standards to explore
potential integration opportunities.



References

[1] ”International Organization for Standardization”, “ISO 34501
Road vehicles — Road vehicles — Test scenarios for automated
driving systems — Vocabulary,” 2022. [Online]. Available:
https://www.iso.org/standard/78951.html

[2] N. Kalra and S. M. Paddock, “Driving to safety: How many
miles of driving would it take to demonstrate autonomous
vehicle reliability?”Transportation Research Part A: Policy and
Practice, vol. 94, pp. 182–193, Dec. 2016.

[3] ”International Organization for Standardization”, “ISO 34503
Road Vehicles — Test scenarios for automated driving systems
— Specification for operational design domain.” [Online].
Available: https://www.iso.org/standard/78952.html

[4] E. Thorn, S. C. Kimmel, M. Chaka, Virginia Tech
Transportation Institute, Southwest Research Institute, and
I. Booz Allen Hamilton, “A Framework for Automated
Driving System Testable Cases and Scenarios,” NHTSA,
Tech. Rep. DOT HS 812 623, Sep. 2018. [Online]. Available:
https://rosap.ntl.bts.gov/view/dot/38824

[5] “ASAM OpenODD: Concept Paper.” [Online]. Available:
https://www.asam.net/standards/detail/openodd/

[6] “ASAM OpenTestSpecification Concept Paper Ver-
sion 1.0.0 Date: 2024-06-30.” [Online]. Available:
https://www.asam.net/standards/asam-test-specification/

[7] “Pkl :: Pkl Docs.” [Online]. Available: https://pkl-lang.org/

[8] “PAS 1883:2020 Operational Design Domain Taxonomy for
ADS.” [Online]. Available: https://www.bsigroup.com/en-
GB/insights-and-media/insights/brochures/pas-1883-
operational-design-domain-odd-taxonomy-for-ads-
specification/

[9] T. Charmet, V. Cherfaoui, J. Ibanez-Guzman, and
A. Armand, “Overview of the Operational Design Domain
Monitoring for Safe Intelligent Vehicle Navigation,” in
2023 IEEE 26th International Conference on Intelli-
gent Transportation Systems (ITSC). Bilbao, Spain:
IEEE, Sep. 2023, pp. 5363–5370. [Online]. Available:
https://ieeexplore.ieee.org/document/10421823/

[10] C. W. Lee, N. Nayeer, D. E. Garcia, A. Agrawal, and
B. Liu, “Identifying the Operational Design Domain for
an Automated Driving System through Assessed Risk,”
in 2020 IEEE Intelligent Vehicles Symposium (IV), Oct.
2020, pp. 1317–1322, iSSN: 2642-7214. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9304552

[11] J. Erz, B. Schütt, T. Braun, H. Guissouma, and E. Sax,
“Towards an Ontology That Reconciles the Operational Design
Domain, Scenario-based Testing, and Automated Vehicle
Architectures,” in 2022 IEEE International Systems Conference
(SysCon), Apr. 2022, pp. 1–8, iSSN: 2472-9647. [Online]. Avail-
able: https://ieeexplore.ieee.org/abstract/document/9773840

[12] C. Sun, Z. Deng, W. Chu, S. Li, and D. Cao, “Acclimatizing the
Operational Design Domain for Autonomous Driving Systems,”
IEEE Intelligent Transportation Systems Magazine, vol. 14,
no. 2, pp. 10–24, Mar. 2022, conference Name: IEEE Intelligent
Transportation Systems Magazine. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9440962

[13] B. Kaiser, H. Weber, J. Hiller, and B. Engel,
“Towards the definition of metrics for the assessment
of operational design domains,” Open Research Eu-
rope, vol. 3, p. 146, Sep. 2023. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585198/

[14] P. Weissensteiner, G. Stettinger, S. Khastgir, and
D. Watzenig, “Operational Design Domain-Driven Cov-
erage for the Safety Argumentation of Automated
Vehicles,” IEEE Access, vol. 11, pp. 12 263–12 284,
2023, conference Name: IEEE Access. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10036064

[15] “ISO/ICE/IEEE 29119-1:2022 Software and systems engineer-
ing - Software testing,” 2022, edition: Edition 2 tex.entrytype:
standard.

[16] ”International Organization for Standardization”, “ISO
26262:2018 Road vehicles — Functional safety.” [Online].
Available: https://www.iso.org/standard/68383.html

[17] ——, “ISO 21448:2022 Road vehicles — Safety
of the intended functionality.” [Online]. Available:
https://www.iso.org/standard/77490.html

[18] M. Gyllenhammar, R. Johansson, F. Warg, D. Chen, H.-
M. Heyn, M. Sanfridson, J. Söderberg, A. Thorsén, and
S. Ursing, “Towards an Operational Design Domain That
Supports the Safety Argumentation of an Automated Driving
System,” in Preceedings 10th European Congress on Embedded
Real Time Systems (ERTS 2020), 2020. [Online]. Available:
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-43696

[19] A. Tonk, A. Boussif, J. Beugin, and S. Collart-Dutilleul,
“Towards a Specified Operational Design Domain for a Safe
Remote Driving of Trains,” in ESREL 2021, 31st European
Safety And Reliability Conference, Angers, France, Sep. 2021,
p. 8p. [Online]. Available: https://hal.science/hal-03328878

[20] ”International Organization for Standardization”, “ISO 34502
Road vehicles — Test scenarios for automated driving systems
— Scenario based safety evaluation framework,” 2022. [Online].
Available: https://www.iso.org/standard/78951.html

[21] M. Skoglund, “ODD in Pkl.” [Online]. Available:
https://github.com/Marskse/ODD

[22] “Federal Size Regulations for Commercial Motor Vehicles -
FHWA.” [Online]. Available: https://ops.fhwa.dot.gov

[23] “Open-source tool that uses simple textual descriptions
to draw beautiful UML diagrams.” [Online]. Available:
https://plantuml.com/

Appendix A
Complete ODD graph



Fig. 9. Configured concrete ODD rendered in JSON visualized in PlantUML. Note: The intention is not to present all details but to
convey a sense of the size and complexity of the complete structure.


