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Abstract: To ensure road traffic safety, the safety verification and validation of automated
vehicles are of the utmost importance. Scenario-based testing is one of the most popular
approaches, as it is cheaper, safer, and faster than on-road testing. The number of possible
scenarios encountered by an automated driving system could be virtually infinite due to the
complexity and uncertainty of the driving environment. Hence a framework is needed which
expresses the degree of dissimilarity between two driving scenarios quantitatively. This work
first develops a dissimilarity metric that compares different driving scenarios and secondly,
categorizes them to identify the most critical ones in each category. This way, a finite set of non-
redundant scenarios are identified which can be used for validating the safety of an automated

driving system.
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1. INTRODUCTION

Over the past few years, significant effort has been put into
developing an automated driving ecosystem of new-age
startups, automotive incumbents, and the government. As
a result, technology has improved and impressive progress
can be seen. However, several technical and ethical chal-
lenges limit the wide-scale deployment of automated driv-
ing. In 2021, the National Highway Traffic Safety Admin-
istration ordered all companies with self-driving vehicles
or partially automated systems to report all crashes to the
government. The agency found 467 accidents, resulting in
54 injuries and 14 deaths since then. Also in October 2023,
the California Department of Motor Vehicles suspended
a company’s permit for deploying and testing driverless
cars, citing ‘unreasonable risk to public safety’. These
incidents reiterate the importance of safety verification
and validation of autonomous vehicles (AVs) before any
claims of safety improvement over human drivers can be
confidently made.

To demonstrate that the failure rate of AVs in Opera-
tional Design Domain (ODD) is statistically significantly
lower than the human driver failure rate, autonomous
vehicles would require ‘billions of miles’ of testing [5].
The traditional method of validating the system on roads,
while necessary, is incapable of validating the AV’s behav-
ior under complex real-life scenarios, thereby demanding
safer, cheaper, and faster methods of development. Hence,
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virtual validation of AVs has gained much traction in the
recent past.

ISO (International Organization for Standardization) [1]
defines the absence of unreasonable risk resulting from
hazardous behaviors related to functional insufficiencies
as the safety of the intended functionality (SOTIF). SO-
TIF classifies scenarios into four areas: Safe-Known (Area
1), Unsafe-Known (Area 2), Unsafe-Unknown (Area 3),
and Safe-Unknown (Area 4), primarily aiming to reduce
Unsafe-Unknown scenarios. This reduction is done by iden-
tifying scenarios in Area 3 and shifting them to Area 2,
which is thus covered by verification.

In the literature a scene, a scenario, and relevant termi-
nologies are well-defined [7]. A scene is defined as the
evaluation of a concrete scenario at a given time instant.
Scenario-based virtual testing has been well explored in
the literature. However, this testing approach also can-
not practically simulate the ‘infinite’ number of scenarios
encountered by the automated driving systems (ADS).
Therefore, attempts have been made to limit this ‘infinite’
pool of scenarios to a finite set of safety-critical scenarios.
These algorithms should not only generate and hence
identify scenarios which are ‘different’ from each other,
but they should also select the most critical ones from the
set. This raises the questions:

(1) How to select the most critical scenario from a set of
generated scenarios?

(2) How to quantitatively define dissimilarity between
two driving scenarios?

To address the first question, numerous studies in the liter-
ature propose various metrics to quantify how unsafe a sce-



nario is. These metrics are either time-based, deceleration-
based, or energy-based. Common metrics include Time To
Collision (TTC) and its variations, Deceleration Rate to
Avoid the Crash (DRAC), and Crash Index (CAI) just to
name a few [17]. In contrast, we see a lack of metrics to
quantify how unknown a scenario is for the AV. Most of the
proposed metrics use a recorded dataset to quantify how
unknown a scenario is. Our approach does not consider
how unknown the scenario is from the perspective of the
AV, but rather how different the scenario is from a limited,
previously acquired scenario database. To address this
issue, Rajesh et al. [10] and Singh et al. [12] propose an
approach to extract the actors’ behavior from a real-world
dataset and then propose a metric to quantify unknown
scenarios.

To address the second question, metrics that can differ-
entiate between scenarios based on a finite set of features
are widely explored in the literature. Su et al. [14], Sousa
et al. [13], and Tao et al. [15] present surveys on existing
measures of similarity in literature. The most commonly
used measures from the surveys are Euclidean distance,
Lock-step Euclidean distance, Dynamic Time Warping,
Longest Common Sub Sequence, Edit distance, Edit Dis-
tance with Real Penalty, Normalized Euclidean distance,
Fréchet distance, and Hausdorff distance.

The primary emphasis of the approaches by Kerber et
al. [6], Bernhard et al. [2], and Pin Nie et al. [9] is on
computing dissimilarity based on a scenario trajectory-
level formulation. However, Mahadikar et al. [8] proposed
a method to compute dissimilarity specifically at the most
critical scene, rather than across the entire scenario. This
approach is suggested because, from a safety viewpoint,
the most relevant information in a scenario is found near
the most critical scenes. This reduces the problem domain
from trajectory-level analysis to a single scene-level analy-
sis, wherein the most safety-critical scene is identified using
a criticality metric. The authors use the minimum distance
between actors throughout the scenario as a measure of
criticality, as it possibly indicates the risk of an imminent
collision. Consequently, the scene with the minimum dis-
tance between ego vehicle and other actors is identified as
the most safety-critical scene. At the most critical scene
of the scenario, the authors choose orientation (potential
collision angle, relative heading angle) of the actors for
quantifying dissimilarity between the scenarios, and we
also follow the same choices.

This work implements a two-step methodology for criti-
cal scenario identification, leveraging dissimilarity metrics
to categorize and select diverse scenarios. The approach
first categorizes scenarios coming out of the optimization
algorithm based on discrete features such as actor paths
and types. Subsequently, a continuous dissimilarity metric
is applied to cluster scenarios within each category, focus-
ing on the most critical scene. This ensures the selection
of non-redundant and safety-relevant scenarios. The case
study highlights the effectiveness of this method in identi-
fying a diverse and representative set of critical scenarios
from an optimization-generated set of scenarios to find
novel scenarios.

This paper is organized as follows. Section 2 outlines the
workflow and explains different steps including scenario

Batch of scenario generation through
optimization

}

Categorize all the scenarios based on
discrete features (actor types, paths)

;

Cluster the scenarios in each category
based on continuous features

!

Find the scenario with minimum
objective value in each cluster

}

Repeat the process for all the unique

categories
. J

Fig. 1. The main steps of the proposed methodology

generation, computation of continuous features, calcula-
tion of dissimilarity metric based on continuous features,
categorization based on discrete features, and selection of
the most critical scenario. Section 3 applies the proposed
methodology to a set of synthetically generated scenar-
ios. Section 4 summarizes the study findings and post-
processes the identified critical scenarios. Finally, Section
5 summarizes the work and provides an outlook on future
research.

2. METHODOLOGY

This section outlines the main steps of the proposed
methodology, as illustrated in Fig. 1.

First, a batch of scenarios is generated through an op-
timization study, as explained in Section 2.1. Next, the
scenarios are categorized based on discrete features, as
described in Section 2.2. The continuous features are
then computed in the most critical scene in all scenarios
(Section 2.3). These features are then used to calculate
the dissimilarity between two scenarios. Our approach
to calculating the dissimilarity metric is inspired by the
work of Mahadikar et al. [8], however, the formulation
presented in this work, detailed in Section 2.4, differs from
that proposed by Mahadikar et al. [8]. This dissimilarity
metric forms the basis for clustering the scenarios (Section
2.5). Finally, we identify the most critical scenario in each
cluster to find a set of unknown-unsafe scenarios.

2.1 Optimization based generation of scenarios

To generate scenarios that are the most unknown-unsafe
and are highly probable in the real world, the optimization
method explained in [12] is applied. The objective function
f(n) used here must satisfy the requirements of novelty
and criticality. Hence it is formulated as:

f(n) = G(Ps(n) x (2 =€) + TTCpin(n)) (1)
where we assume that a scenario is characterized by the
scenario parameters 7 like actor velocities and positions.e
is a Siemens proprietary key performance indicator which
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Fig. 2. Schematic view of the ego and target vehicles at
the instant of minimum distance along with relevant
angles. Counter-clockwise measurement is considered
positive. Note that the value of the angles are exem-
plary.

denotes the unexpectedness of a scenario and TTC,;,, is

the minimum time-to-collision, being a measure of how

unsafe a scenario is. G(Ps(n)) is a proprietary function
of Ps(n) where Ps(n) is the probability of occurrence of

a scenario. G(Ps(n)) has an inverse relationship, which

means that it gives lower values for higher values of Ps(n).

It should be noted that ¢ and TT'C,,;, are functions of the

scenario parameters 7, and are evaluated as outputs of the

simulation of the scenarios.

2.2 Categorization based on discrete features

The scenarios are first categorized based on discrete fea-
tures. These features are related to the paths and types
of target actor and other relevant actors in a scenario.
Relevant actors include actors that influenced the collision,
for example, an actor that occluded the collided target
from the ego vehicle. Scenarios with different target paths
and types are considered entirely distinct. For any two
given scenarios with a fixed set of ego and target actor
types and paths, if the type or paths of the other relevant
actors are different in these scenarios, then they are also
considered to be completely different. Furthermore, if there
are scenarios with similar discrete features, they could be
different in terms of angles as shown in [8], which means
they would still be different scenarios, motivating the need
of a dissimilarity metric based on the orientation (angles)
of the actors.

2.8 Definition and calculation of continuous features

At the most critical scene between ego and target vehicles
the continuous features are calculated, as represented in
Fig. 2. Both ego and target vehicles are modelled as
two circles positioned on their front and rear axles, with
diameters equal to the width of the respective vehicles. The
distance between the centres of these circles is such that
they just fit within the vehicle boundaries. Consequently,
the line connecting the centres of the circles represents the
vehicle’s heading. Note that articulated vehicles are not
considered in our work.

The minimum distance between vehicles in a scene is

calculated by min (d;; — (r1 + r2)). The distances d;;
i,j€{1,2}

represent the distance between the i'" and j* centres of
the circles of the two vehicles, where i belongs to the ego
vehicle and j belongs to the target vehicle. The radii of
the vehicle circles are denoted by r; and ro, as shown in
Fig. 2.

The point of minimum distance (PMD) is at the intersec-
tion between the circle from the ego vehicle and the line
connecting the centres of the representative circles of the
two vehicles which are geometrically nearest to each other
at this instant. In the PMD, two angles are calculated:
the relative heading angle 6,; and the collision/near-miss
angle ¢. in the frame of the ego vehicle. The physical rep-
resentation of these angles in a critical scene is illustrated
in Fig. 2. The relative heading angle 6,.; indicates the
orientation difference between two vehicles, showing how
they approach each other. The collision/near-miss angle ¢,
represents the location on the ego-vehicle where a collision
or near-miss might occur, such as the side, front, or rear.
For each scenario, 0,.; is calculated as the angle between
the heading vectors of the two vehicles at the minimum
distance. The angle ¢, is calculated as the angle between
the heading of the ego vehicle and the vector from the
centre of the ego vehicle to the point of minimum distance
(PMD). Since these angles can have an impact on the
criticality of the scenario, they are proposed to be used
to calculate the dissimilarity metric, for instance, colliding
with a target vehicle with front vs back vs side of the
ego vehicle will have different influence on the resulting
impact. Note that this approach to model the actors can
be extended to other types of actors, such as cyclists and
pedestrians. For instance, a pedestrian can be represented
by a small-radius circle, while a cyclist can be modelled
using two small-radius circles positioned at a wheelbase
length apart.

2.4 Definition of dissimilarity metric

The dissimilarity metric introduced by Mahadikar et al.
[8] integrates both discrete and continuous features into
a single measure. In [8], the mesh grid was used as a
discrete feature, whereas in our work, we use paths, the
type of target actor, and other relevant actors as discrete
features. Additionally, we first employ discrete features for
categorization and then apply continuous features to refine
categorization within each category. The method used here
is represented in Fig.3.

Consider any two scenarios S1 and S2 with the following
values of continuous features;

S1: (97‘611;¢61) and S2: (97‘€l27¢02)'

First, the cosine dissimilarity [3] is calculated according to
AH =1 — cos(Oreir — Orei2)]/2 (2)
AC = [1 = cos(pe1 — ¢e2)]/2 (3)
Here the cosine similarity index is halved, because it
returns values in the range [0,2] but it is desired to be
reduced to [0,1] for simplicity and intuitive understanding

of dissimilarity. Then the dissimilarity metric (51, 52) is
calculated as;
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Fig. 3. Framework for continuous dissimilarity metric
calculation for two scenarios in a category

w1 + Wy = 1 (5)
The weights (wy,ws) of both the angles can change based
on the environment being analyzed. For instance, in the
case of highway driving, the difference in heading angles of
the scenarios would not be too large, hence it should have
a lower weighting. However, in our case of an intersection
(Fig. 5), equal weightings (w3 = wy = 0.5) have to be
given to both the angles.

0(51,52) closer to 1 shows a higher level of dissimilarity
between the scenarios whereas the values closer to 0
indicate otherwise.

2.5 Clustering based on continuous features

To cluster the scenarios with the formulated dissimilarity
metric, k-medoids clustering is applied [4]. This is an
unsupervised learning algorithm used for data clustering,
which groups unlabeled data points into clusters, even with
a custom distance metric. This type of clustering requires
a priori choosing the number of clusters k. The clustering
process is conducted iteratively for various values of k&,
and the cluster quality is evaluated by calculating the
silhouette metric for each iteration. The silhouette metric
is a measure of how compact and isolated a cluster is from
other clusters [11]. The value of k& which gives the highest
value of the silhouette metric is therefore chosen. An
advantage of the silhouette metric is that it can be applied
to any distance metric, making it easy to implement with
the dissimilarity metric. Hence the best value of k, based
on the silhouette score, is then used to cluster the set of
scenarios.

Fig. 4 gives a visual representation of what the proposed
methodology aims to achieve.

3. IMPLEMENTATION

In this section, the proposed methodology is applied to a
case study of an intersection. The intersection is presented
in Fig. 5.

To apply the proposed methodology to a case study, a
synthetic set of scenarios is generated by the method

proposed by [12] as shown in Fig. 6. Firstly, data collection
of trajectories is performed through instrumented vehicles
as well as data-recording setups like static drone footages
or infrastructure-mounted sensors. This data is then pro-
cessed to remove sensor noise and extract full trajectories.

Next, actors’ behavior extraction is performed from the
recorded trajectory data in each scene. This is done to
primarily identify a relevant and finite set of features
which can explain the behavior of the actors. This is
done by describing the road layout as a graph, where
the nodes of the graph are defined by unique entry, exit
and intermediate points in the defined scene. Then an
average path of the actors is made based on the probability
distribution of the parameters. The trajectories for all
the non-ego actors are now parameterized and scenarios
are generated by varying the parameters that affect the
scenarios. These parameters include but are not limited
to entrance times, velocity at different sections and lateral
offset of the vehicles [12].

The scenario is modelled in Simcenter Prescan ! , a physics-
based simulation software for the virtual validation of au-
tonomous vehicles. The Prescan Graphical User Interface
is used to model the actors described above, along with the
road layout. Scenario parameters are varied using a script
that uses the data model API feature of Prescan. Sim-
center HEEDS design exploration and optimization soft-
ware? offers the SHERPA algorithm [16] which solves the
optimization problem to find unknown-unsafe scenarios
using Eq. 1. It also automatically optimizes the hyperpa-
rameter values of the individual optimization algorithms.
SHERPA can handle mixed discrete-continuous spaces and
nonlinear, non-convex fitness functions. Consequently, the
Siemens Prescan HEEDS tool-chain was utilized to run
simulations and optimize the scenario parameters. Multi-
ple HEEDS studies were conducted with varying paths for
all actors in the scenarios. Each HEEDS study focuses on
finding the most critical scenarios for a different ego-main
target combination.

4. RESULTS AND DISCUSSION

This section presents the results from a single HEEDS
study where the paths of both the ego vehicle and the
main target vehicle are fixed. In the previously described
use case, HEEDS generated a total of 1,000 scenarios,
of which 395 were found to meet the constraints, e.g.,
collision of non-ego actors or lack of interaction between
ego and target vehicles.

For the 395 feasible scenarios, 12 categories were identified
based on discrete features (type and path of non-target
actors). The scenarios within each category were then
clustered based on a dissimilarity metric. The most critical
scenario, i.e., the scenario with the minimum objective
score f(n) , was identified in each cluster within a category.
For example, in a particular category of scenarios, three
distinct scenarios were found and reported based on the
dissimilarity metric, as shown in Fig. 7. This approach

I Simcenter Prescan software - https://plm.sw.siemens.com/en-
US/simcenter /autonomous-vehicle-solutions/prescan/

HEEDS - https://plm.sw.siemens.com/en-
US/simcenter/integration-solutions/heeds/

2 Simcenter



Fig. 4. The entire set of scenarios is categorized on two levels. First, the set of discrete features categorizes the scenarios
into three categories (solid lines). Each category is then further clustered (dotted lines) based on a dissimilarity
metric using continuous features. This process identifies six unique, critical scenarios, marked by a black cross.

Note that the numbers three and six are illustrative.

/

Fig. 5. Top-view of the simulated intersection with exem-
plary actors’ paths. The ego vehicle is colored red, the
target vehicle is blue and there are two other actors
shown in orange and green. The dotted lines show
their respective paths.
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Fig. 6. The main steps of scenario generation process

results in higher number of scenarios within each category
compared to using only discrete features.

A total of 28 distinct safety-critical scenarios are found
through this method. This is a significant increase from
what we obtained when we only used discrete features for
categorization, i.e., 12 scenarios. Fig. 8 shows the snap-
shots of the identified scenarios in a particular category.
It can be seen from the snapshots that these identified
scenarios are dissimilar to each other based on how the
ego vehicle interacts with the other actors in the most
critical scene. For instance, although the heading angles
of the ego and target vehicles are comparable in Scenarios
A and B, they collide with each other in very different
ways, as reflected in their collision angles, which are shown
in the snapshots. Likewise, the collision/near-miss angles
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Fig. 7. Clustering plot with identified critical scenarios in
a particular category marked with a red cross in each
cluster

are comparable in Scenarios B and C, but their relative
orientation in the most critical scene is quite different,
thereby suggesting dissimilarity between these scenarios.

5. CONCLUSION

This paper presents a methodology and case study for
identifying diverse critical scenarios using dissimilarity
metrics. By employing a two-level categorization, first
based on discrete features and then continuous features, a
higher number of critical scenarios is identified, compared
to using discrete features only. The case study demon-
strates the efficacy of this approach in deriving a set of
diverse scenarios that capture key safety challenges in the

ODD.

Currently, the heading and collision/near-miss angles used
in the dissimilarity metric implementation are based on
the approximations of actor bounding boxes. These ap-
proximations can be further refined in future work by
integrating detailed bounding box data from Prescan sim-
ulations, leveraging object-level sensor models. Addition-
ally, extending the evaluation to consider events occurring
before the collision or near-miss would allow for temporal
analysis of scenario criticality. Further enhancements could
include adapting the methodology to different ODDs, such
as highways or urban environments, to generalize its ap-
plication.
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Fig. 8. Examples of identified critical scenarios. Animation snapshots of Designs A, B, and C respectively.
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