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Abstract—In scenario-based testing of automated driving
functions (ADF) the instantiation of concrete scenarios
and test cases from logical scenario descriptions is an
essential task. This work compares an open-loop method,
where the scenario samples are defined prior to simulation
execution, with a closed-loop procedure. The latter one
specifically searches for scenario parameter combinations
for ADF falsification and exploration of critical parameter
space regions. The open-loop approach is based on sta-
tistical sampling and pseudo-random number generation
for space filling. In contrast, the closed-loop approach
involves iterative scenario simulation and evaluation of the
ADF behavior by a black box optimizer. This approach
comprises a modular framework for virtual testing of
autonomous driving, structured around a base layer. A
fundamental aspect of the framework’s architecture is
the harmonization of subsystem interfaces within the base
layer, enabling a truly modular design. To ensure seamless
integration, adopting an open standard for defining subsys-
tem interfaces is advantageous. In this context, the ASAM
Open Simulation Interface (OSI) standard is particularly
suitable, as it facilitates efficient and straightforward com-
patibility between the various subsystems. A co-simulation
platform manages the execution of subsystems, while the
proposed method selects scenario parameters to identify
critical concrete scenarios efficiently, avoiding exhaustive
exploration of the entire parameter space.

Index Terms—Parameter sampling, optimization, harmo-
nization, simulation framework

I. INTRODUCTION

Automated driving has been a topic of intensive re-
search for years. At the same time, the need for virtual
testing of the developed driving functions has also in-
creased. Scenario-based testing is becoming increasingly
important in the development, verification and validation
of automated driving systems (ADS). In order to ensure
the correct functionality of the ADS, various scenarios
must be tested to verify the right behavior in situations
within the Operational Design Domain (ODD). But even
within a scenario, the various parameter ranges must be
covered. This results in a huge number of test cases and
the question of how to find critical test cases that could
lead to potential safety risks.

There are already several methods to identify critical
scenarios that can be divided into different categories.
In [1], such a categorization was made. Some methods
explore logical scenarios without parameter trajectories.
These methods are divided into naive search (sampling
and combinatorial testing) and guided search (optimiza-
tion and learning-based testing). Sampling methods in-
clude near-random sampling, such as Latin Hypercube
sampling [2] and exhaustive search [3], [4], while com-
binatorial testing generates a minimum set of test cases
to satisfy N-wise coverage [5]. Optimization methods use
objective functions representing criticality measures and
employ various heuristic techniques [6]. Learning-based
testing combines model checking with model inference
algorithms [7]. Another category is the exploration meth-
ods for logical scenarios that include parameter trajecto-
ries. These methods can be categorized into optimization,
path planning, and reinforcement learning. Optimization
assumes that the values at different time steps of a
trajectory are independent and includes a cost function
designed to guide the search for a trajectory that forces
the system of interest to fail (e.g., Bayesian optimiza-
tion) [8]. Path planning includes algorithms like Rapidly
Exploring Random Trees (RRT) [9] and optimal control
[10]. Reinforcement learning programs agents by giving
rewards based on their actions without specifying how
the task should be accomplished. It includes algorithms
like Monte Carlo tree search and deep reinforcement
learning. These methods model the problem as a Markov
decision process (MDP) and use techniques like deep Q-
learning to learn the behavior of adversarial agents [11].

This paper formulates the test case generation as an
optimization problem and therefore facilitates guided
search of critical regions in the parameter space II-C.
To execute the tests a harmonized simulation framework
(introduced in [12]) is built, which ensures modularity,
interoperability, and scalability and is described in sec-
tion II-D.



II. METHODOLOGY

All ADFs below SAE-Level 5 are restricted to a
designated ODD. The ODD defines the set of conditions,
situations, and circumstances under which an ADF has
been designed to function and operate safely (e.g., en-
vironmental or geographic restrictions, the presence or
absence of certain traffic or road geometry elements, etc.)
[13]. A common approach for testing and verification
of ADFs relies on the definition of a set of scenarios
containing all safety-relevant situations which can occur
within (or at the border of) the given ODD. These so-
called logical scenarios, which include among others
road geometry, static objects, and dynamic object paths
/ trajectories, still comprise adjustable parameters and
their constraints. As soon as a single parameter is real-
valued, one logical scenario has infinitely many concrete
realizations [14]. Selecting feasible values for all pa-
rameters yields a concrete scenario and together with
some assessment criteria one obtains a test case. The
evaluation of the ADF behavior in those test cases builds
the foundation for safety argumentation. Assuming the
selected logical scenarios to sufficiently cover the ODD,
there remains the question of how to choose individual
test cases from a potentially infinite number. This process
is denoted as concretization in the rest of the document.

Due to the typically high number of test cases, it is
common practice to execute a major amount in simula-
tion environments to reduce time and effort [14]. Thus,
the concretization approach is combined with a modular
simulation framework (Section II-D) to demonstrate its
applicability for seeking the safety limits of an ADF.

A. Scenario Parameters

To derive concrete scenarios from logical scenarios
feasible values must be picked for all parameters. This
work focuses on parameters such as initial conditions
of dynamic systems or sensor parameters, which re-
main constant during simulation, contrary to parameter
trajectories [1]. Assume a logical scenario comprises
parameters from R, 7Z, and some finite sets Fy, o, ...
Then the parameter space is

P =RN x ZN: x P11 x FY2 x .. (1)
with total parameter number N = N, + N, + Ny, +
Ny, + ... and N.,N,, Ny ,Ny,,... € N. A concrete
scenario reads as

se€S with SCP 2

where S is the space of feasible concrete scenarios due
to potential parameter constraints.

B. Scenario evaluation

Let N, € N be the number of other traffic participants
in the scenario and T;,, > 0 the simulation time. The
test cases are assessed as passed or failed depending on
predefined thresholds for the following metrics:

1) Minimum Time-to-collision: The time-to-collision
(TTC) between two entities is defined as time until a
collision would occur if they continued on their current
path and speed [15]. The minimum TTC for concrete

scenario s is defined as
T. (s) = min
Tic(s) i€{1...No}

0<t<Tsim

th(s7i7t) (3)

with 0 < Ti.(s,1,t) < oo yielding the TTC between ego
and i-th entity at time instant ¢.

2) Minimum distance: Letp,g,,p,; : SXR — R? be
the time-varying positions of ego and i-th other entity in
the inertial reference frame, respectively. The minimum
distance to others the ego reaches in scenario s reads as

d(s) = _min[[Pego(s.) ~ Pos(s.B)lle @)
0<t<Tsim

Even if T,.(s) = oo, which means no collision has

occurred, the distance between ego and others could be

extremely small. By demanding a lower limit for (4)

this safety issue is addressed. Furthermore, it proved

beneficial to include (4) in optimization (Section II-C2).

A test case scores failed if T,.(s) < Ticinr OF
d(s) < dypr with Tye ¢pyr > 0 and dyp, > 0 being TTC
and distance thresholds.

C. Scenario Concretization

Concretization selects scenarios from (2) based on one
of the following strategies:

o Open-loop: The parameter combinations are deter-
mined from (2) prior to test case execution and
therefore unaffected by the performance of the ADF
under test. These approaches are often denoted as
sampling methods and their results as samples [1].

o Closed-loop: Initially a certain number of test cases
is generated and executed. The subsequent points in
S are selected based on simulation outcomes.

1) Open-loop: For most practically relevant sce-
narios, exhaustive search in S is computationally in-
tractable, especially when real-valued parameters are
involved. This approach solves this issue via statistical
sampling and quasi-random sequences. The modular
implementation supports any generator function whose
outputs ¢ = [c; ...cy]T lie within the unit hypercube,
ie, Vi:c¢ € R’O < ¢; < 1. Afterwards those samples
are transformed into admissible parameter space Sor.,
which is constructed from individual parameter bounds

SOLzslxn-XSNT-&-Nz- (5)



For every numeric parameter one can specify P; sepa-
rately, e.g., for real parameters

Si={reR|(h<r<wm)V(2<r<u)..}. (6

Constraints involving several parameters (e.g., 0 < r; <
r9) are currently not available in the open-loop approach.

One supported generator function is Latin Hyper-
cube Sampling (LHS) which draws near-random samples
from multidimensional distributions. Its advantage over
pure random sampling is that S is evenly explored,
requiring fewer samples to get a good representation
[16]. Alternatively to LHS, samples can be created from
Sobol pseudo-random sequence, which exhibits good
space filling properties in high-dimensional spaces. The
corresponding implementations from [17] are utilized to
generate c.

2) Closed-loop: The open-loop approach potentially
needs a large sample number to reach unsafe test cases,
especially in high-dimensional S. Each sample requires a
possibly time-consuming simulation, which leads to high
effort in total. To address this issue the paper proposes
to specifically search for critical parameter combinations
via optimization. Starting with an initial guess (consists
of one or several distinct samples) the simulation results
are feed into an objective function, which is a numer-
ical representation of the safety measure. Gradients or
Hessians are not available as the objective evaluation
involves execution of the modular simulation framework
with exchangeable components (ADF, vehicle dynamics,
etc.) described in Section II-D. Therefore, derivative-free
solution methods are applied. Assuming that s € R the
optimization problem’s generic form is

in J bject t 7
min (s) subject to (7a)
I, <s<uw (7b)
h(s) <0 (Tc)

with lower and upper parameter bounds l,,u, € RV,
zero vector 0 € RN, and N, > 0 nonlinear constraints
h: RN — RMe. To promote unsafe test cases the ob-
jective function in (7a) is chosen as combination of the
evaluation metrics (3) and (4). Since T',.(s) = oo if there
is no collision an auxiliary function

ri = { 7

te,max
is introduced, that limits TTC to a finite Tic e > 0.
Using (8) the objective function is stated as

J(S) = w1 ‘Cl(S) - ddes| + wa |I:fkc(s) - th,des| (9)

where dges > 0, Ticges > 0, wy > 0 and wo > 0
are desired distance and TTC, and the corresponding
weighting factors, respectively. Including d(s) in (9) sig-

nificantly improves convergence, since whenever there is

if T,.(s) < o0
else

®)

no collision T75,(s) = Tic.maz» Which does not provide
any direction information to the solver. With non-zero
dges and Ty g5 One can guide the search rather into the
boundary region between passed and failed than to the
worst result. To solve (7) the following algorithms from
the Global Optimization Toolbox of [17] are applied:

a) Pattern Search: (PS) starts at a random s € S.
During polling phase it evaluates J(s) at a set of points
(the mesh points) around the current point. If a mesh
point with lower objective function value is found, it
becomes the new current point. The mesh size is adjusted
based on the success of the poll. If a better point is found,
the mesh size is expanded, otherwise, it is contracted.
Now polling starts again until a stopping criterion is met.

b) Genetic Algorithm: (GA) begins with an initial
population of candidate samples. In selection phase the
individuals with the best .J(s) are selected for generating
the next population. Crossover combines parameters
from selected samples to create new offspring. Mutation
introduces random changes to generate new samples. The
next generation (best, crossover, and mutation samples)
is expected to contain better solutions than the current
one and start again with selection.

c) Particle Swarm: (PSW) starts with an initial
particle population, each with random velocity. During
evaluation J(s) is obtained for each particle, identifying
the lowest function value and the corresponding location.
Each particle’s velocity is updated based on its current
velocity, its encountered best position, and neighboring
best positions. The new particle positions are the old
ones plus the velocities, adjusted to satisfy (7b) and
evaluation phase is repeated. PSW does not support (7c).

d) Surrogate Optimization: (SO) determines J(s)
at a set of initial points and builds an internal surrogate
model by fitting a radial basis function. For several thou-
sand random samples fulfilling the constraints a merit
function, considering both the surrogate value and the
distances from points where the expensive simulation has
been previously executed, is evaluated. The best sample
w.r.t. the merit function is selected as adaptive point
where J(s) is evaluated and the surrogate model adapted
accordingly. The search for the best merit function value
is repeated until stopping criteria are met.

D. Simulation Framework

An adequate simulation framework that incorporates
all relevant systems is crucial for virtual testing of ADS
as described in [18]. In the EU Project SUNRISE,
a harmonized simulation framework is introduced as
part of the broader Safety Assurance Framework [12].
The objective is not to prescribe specific tools, but
rather to develop a simulation architecture that facilitates
interoperability. By employing standardized interfaces
and common data formats, the framework enables users
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Fig. 1: Overview of the harmonized Simulation Frame-
work proposed by [12].
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Fig. 2: Simulation topology of the framework imple-
mented in Model. CONNECT

to switch between tools seamlessly without needing to
redesign the overall system. This approach supports the
creation of a modular, flexible, and scalable simulation
framework that can adapt to varying project requirements
and technological developments.

Fig. 1 shows the final version of the harmonized
simulation framework. At its foundation is a base layer
consisting of four interconnected subsystems: the Subject
Vehicle — Vehicle Dynamics, the Subject Vehicle —
Sensors, the Subject Vehicle — AD Function, and the En-
vironment in which the vehicle operates. This base layer
represents the core structure that can be harmonized, as
these four subsystems are essential to all simulation con-
figurations. Consequently, standardized interfaces, such
as ASAM OS], can be utilized to guarantee modularity
and interoperability among these components. For sim-
plicity, the Environment block also incorporates traffic
simulation and scenario engine, even though standard
interface definitions for these elements are currently
lacking. Beyond the functional interconnections, a Test
Case Manager is included to coordinate the execution
of test cases and underlying scenarios. It also facilitates
the calculation of key performance indicators (KPIs).
The base layer is closely aligned with the ASAM OSI
standard [19]. Moreover, ASAM OpenSCENARIO [20]
and OpenDRIVE [21] are proposed as common formats
for scenario and road network descriptions, promoting
consistency and interoperability within the framework.

Based on the harmonized simulation framework,
Fig. 2 shows the simulation topology used in this paper:

1) Test Case Manager: The simulation platform AVL
Model. CONNECT [22], jointly developed by ViF and
AVL, is used as the co-simulation master. It provides
the capability to integrate models based on standardized
interfaces (Functional Mockup Interface, FMI) as well
as based on specific interfaces to a wide range of
well-known simulation tools. The optimization process
described in Section II-C is implemented in Matlab and
acts as test case manager according to Fig.1.

2) Subject Vehicle - AD Function and Vehicle Dy-
namics: As outlined in [18] and [23] a python module
named RoMPaC (Robust Motion Planning and Control)
has been developed by ViF to support rapid prototyping
of ADFs, with a particular focus on path planning and
control tasks. This framework primarily consists of dedi-
cated components for ADF and vehicle model. The ADF
follows a block-based structure, encapsulating the critical
sub-tasks such as perception, state estimation, decision
making, trajectory planning, and trajectory tracking. The
vehicle model is implemented as a low-fidelity, offering
different variants such as single-track and double-track
vehicle models with adjustable levels of detail. This
setup allows the establishment of a closed-loop archi-
tecture that supports fast and efficient algorithm testing.

The vehicle subsystem receives actuation commands
(gas pedal, brake pedal, and steering angle) from the
ADF. These commands correspond to the OSI MotionRe-
quest message format. Conversely, the ADF subsystem
receives two inputs: object list from the perception
sensor (OSI SensorData) and ego vehicle pose.

3) Subject Vehicle - Sensor: The perception sensor
model is based on the approach described in [24]. It
processes the ground truth object list and outputs de-
tected objects after a two-stage filtering process: field of
view (FOV) filter, occlusion filter. The FOV filter can be
configured by adjusting parameters such as the detection
range and opening angle, while for the occlusion filter,
a visibility threshold is configured to determine whether
an object’s bounding box is considered visible. The
perception model is implemented in C++ and utilizes
the OSMP (OSI Sensor Model Packaging) framework
[25], which defines standardized methods for packaging
sensor models based on the FMI 2.0 standard.

4) Environment: As photorealistic rendering is not
needed, esmini is used as simple environment simulator.
It supports ASAM OpenSCENARIO for dynamic con-
tent simulation, ensuring compatibility with standardized
scenario descriptions. The ego position is embedded into
the OSI Traffic Update signal, which is subsequently
received by esmini. As output, esmini provides the
ideal object list from the environment’s OSI SensorView,
serving as basis for further sensor model processing.

5) Co-Simulation Settings: Another important aspect
of the framework is the co-simulation configuration,



which reads as:

« All subsystems use coupling step size 0.02s

o Sequential scheduling is employed to reduce cou-

pling errors and maintain higher accuracy

o The execution sequence begins with the vehicle

dynamics subsystem, as extrapolating object-based
signals (such as OSI SenorView) is more complex
than extrapolating scalar signals (such as gas pedal
or brake pedal positions).

Additionally, Zero-Order Hold is selected as the ex-
trapolation technique,specifically from the ADF to the
vehicle dynamics subsystem, ensuring a simple and
stable coupling between components.

III. RESULTS

A right-turn maneuver at a T-junction is selected as
the use case for this study. The ego vehicle, which
is controlled by the ADF, arrives at the junction and
needs to give right of way. Another vehicle drives
across the junction with constant velocity, uninfluenced
by the ego vehicle’s behavior (see fig. 3). To identify
potentially critical scenarios the following parameters
are varied: FoV (¢p), range (7sensor), other vehicle’s
starting position (Sother), and velocity (votper). The ego
vehicle’s target velocity is defined by the road speed limit
(17.88 m/s). Fig. 3 presents an example of a near-critical
scenario. Fig. 4 shows the most relevant time-series data
for the scenario. In the upper and middle subplots, it is
evident that the opponent vehicle is detected between 10s
and 12s, prompting the ego vehicle to decelerate. Once
the turn is completed, the ego vehicle accelerates back to
the speed limit using ACC. Because the opponent vehicle
travels at a lower speed, the ego vehicle eventually slows
down again to maintain a safe following distance. The
lower subplot of Fig. 4 shows the distance between the
two vehicles over time, including a critical threshold of
4 meters. At 11 seconds, the actual distance approaches
but does not fall below this threshold. Consequently, the
scenario is classified as non-critical.

A. Open-loop

Open-loop sampling is utilized to demonstrate that
simulation framework and scenario evaluation generate
meaningful results. Furthermore, it facilitates the visual
inspection of the evaluation for variations of up to
three parameters. After specifying number of cases and
sampling method the test cases are independent and
can be executed in parallel. Fig. 5 depicts the results
for varying the two sensor parameters while the others
remain constant. In that setting ¢;, seems to be the major
influencing factor regarding evaluation. In Fig. 6 one
recognizes that the other vehicle must start within a
small region to induce interaction with the ego. Fig. 7
shows 300 samples varying vothers Sother, and Tsensor

(b) t = 10.4s: the ego vehicle
brakes due to the other car

(a) t = 9s: the other car is
still out of FoV

(d) t = 18s: the other car ap-
pears in the FoV, and Adap-
tive Cruise Control (ACC) is
active

(c) t = 14.4s: the ego vehicle
proceeds with the right turn
while the other car is again
outside its FoV

Fig. 3: Scenario visualized with Lichtblick
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Fig. 4: most relevant time-series data of scenario

with constant ¢p. It illustrates that voipe, and Sother
must match to reach the junction at a time such that
the ego must react. Looking at regions with only passed
evaluation results, it is tempting to conclude that they do
not contain safety critical cases. However, the isolated
failed sample in Fig. 7 proves this misleading even for
simple scenarios.

B. Closed-loop

The optimization-based approach searches for critical
cases by minimizing (9). The results in this section
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Fig. 7: Critical cases occur when s,¢per and vpthe, cause
the other vehicle to stay outside the ego’s detection area,
while reaching the junction just after the ego.

are obtained with the following objective function pa-
rameters: w; = wz = 1, dges = Tic,des = 0, and
Tiemaz = 15. Four solvers are compared for their
applicability to the problem and their parameters can be
found in Table I. The optimization and open-loop sam-
pling results for all two-, three-, and four-dimensional
parameter combinations are shown in Fig. 8, Fig. 9,
and Fig. 10, respectively. Each bar color represents one
distinct combination of varied and constant parameters
(the legends list the varied parameters). The solver’s
maximum number of function evaluations has been set
to the number of open-loop samples. Although the
surrogate optimization implementation in [17] has no
objective tolerance parameter, this feature was realized
via a custom implementation. The bottom bar charts in
Fig. 8 and Fig. 9 indicate the objective function value
(the smaller the better) and whether at least one failed
test case w.r.t. (3) and (4). is found. Minimum TTC
and distance together with their corresponding limits
for scoring failed are depicted. SO and PSW find the
most critical cases for all parameter combinations with
a modest number of function evaluations, which involve
the costly simulation executions. The open-loop samples

also contain critical cases for all variations, but with
higher numbers of function evaluations. PS and GA
sometimes struggle to find failed test cases.

IV. CONCLUSION

This paper proposes a closed-loop scenario concretiza-
tion approach and compares different algorithms for
solving the related optimization problems. Its applicabil-
ity is demonstrated using a modular simulation frame-
work for executing right-turn test cases with two-, three-,
and four-dimensional parameter combinations. SO found
the most critical cases in all tests while requiring only
a low number of function evaluations. PSW achieved
similar results especially for three-, and four-dimensional
problems. Although open-loop sampling also found criti-
cal cases for all combinations it requires a higher amount
of costly function evaluations compared to closed-loop
approach. Future work will incorporate the application of
the approach for other scenarios including multiple traf-
fic participants and impact studies of choosing different
objective functions.
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Fig. 9: Closed-loop and open-loop methods for all combinations of three out of four parameters.
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Fig. 10: Closed-loop and open-loop results with all parameters being variable.
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