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Abstract 1

Ensuring the safety of Automated Driving Systems (ADSs) requires structured and trans- 2

parent validation processes. Scenario-based testing has emerged as a widely-adopted 3

approach, enabling targeted assessment of system behaviour under diverse and challeng- 4

ing conditions. To offer a structured approach for scenario-based safety assurance, the 5

European SUNRISE project developed the Safety Assurance Framework (SAF), comprising 6

of stages such as scenario creation, allocation, execution, evaluation, decision-making, and 7

in-service monitoring and reporting. Central to the SAF are scenario metrics, which quan- 8

tify aspects such as coverage, criticality, and complexity, and support evidence for safety 9

cases. This paper provides a comprehensive overview of scenario-based scenario metrics 10

relevant to ADS safety assessment. We categorize six core metric types: completeness, 11

coverage, criticality, diversity/dissimilarity, exposure, and complexity. We explain their 12

roles across the difference SAF components. The paper also discusses interdependencies 13

among metrics, implementation challenges, and gaps where further research is needed, 14

particularly in metric validation, aggregation, and standardization. By clarifying the land- 15

scape of scenario metrics and their application within the SAF, this work aims to support 16

both practitioners and researchers in advancing scalable, data-driven safety assurance for 17

ADSs. 18

Keywords: Automated Driving System; Safety; Assurance; Scenario; Metrics 19

1. Introduction 20

To advance the deployment of Automated Driving Systems (ADSs) on public roads, 21

ensuring their safety and reliability is crucial for both industry and regulators. Large- 22

scale road testing is impractical for ADSs due to the amount of testing that would be 23

required to obtain enough statistical evidence of the safe operation [1]. Scenario-based 24

safety validation is a widely supported approach in the automotive domain [2,3]. The 25

scenario-based approach enables targeted evaluation of system behaviour under diverse 26

and challenging conditions. However, given the complexity of ADSs and the associated 27

operating conditions they operate in, a structured and transparent approach for safety 28

assurance is essential [4]. 29

In response to the need for a structured approach for safety assurance, the European 30

Safety assUraNce fRamework for connected, automated mobIlity SystEms (SUNRISE) 31
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project1 developed the Safety Assurance Framework (SAF), which is based on the New 32

Assessment/Test Method for Automated Driving (NATM) framework proposed by the 33

UNECE [5]. The SAF structures the ADS evaluation into a series of processes that ultimately 34

leads to a systematic argument for the safety case (more details on the SAF will follow 35

in Section 4). The SAF is designed to be flexible towards the application that is under 36

consideration (also referred to as the Subject Under Test (SUT)), the toolchains that are 37

used throughout the assurance process, the operating conditions of the SUT, and external 38

requirements that must be met, making it a valuable foundation for structured safety 39

assurance. 40

An important aspects toward effective implementation of the SAF is the use of scenario 41

metrics: quantitative measures that help evaluate the adequacy, performance, and relevance 42

of the scenarios used throughout the safety assessment process. Metrics can guide scenario 43

selection, support pass/fail evaluation, quantify test coverage, and provide evidence for 44

the safety case. Despite their importance, the literature lacks a consolidated view of which 45

types of metrics are relevant at each SAF stage and how they interrelate. 46

The goal of this paper is to fill this gap by providing a structured overview of scenario- 47

based metrics relevant to the SAF. We categorize and describe key types of metrics such as 48

scenario completeness, scenario coverage, scenario criticality, scenario diversity, scenario 49

exposure, and scenario complexity. Furthermore, we discuss their roles across different 50

SAF components. In doing so, we aim to support both practitioners and researchers in 51

understanding the current state of the art, identifying areas for further development, and 52

applying metrics effectively within the SAF or, more generally, any ADS safety assurance 53

process. 54

This work is structured as follows. First, related surveys are briefly discussed in 55

Section 2. Section 3 provides an overview of scenario metrics. The SAF is described in more 56

detail in Section 4. This section also provides an overview of which metrics can be used 57

at the different SAF components. This paper ends with a discussion and conclusions in 58

Sections 5 and 6, respectively. 59

2. Related surveys 60

Several prior works have surveyed or proposed metrics relevant to the assessment of 61

ADSs, each with a particular focus or application domain. These contributions offer valu- 62

able insights into specific categories of metrics such coverage, criticality, and complexity. 63

However, they often address these concepts, outside the context of scenario-based evalua- 64

tion. Therefore, this work should be seen as complementary to existing surveys, with the 65

goal of providing a scenario-focused perspective on metrics relevant to the scenario-based 66

safety assessment for ADSs. 67

For instance, Emran [6] provides a structured overview of data completeness measures, 68

offering a classification of techniques used to quantify completeness in datasets. Although 69

not tailored to driving scenarios, the conceptual foundation is relevant for understanding 70

how completeness might be formalized in the context of scenario-based assessment of ADSs. 71

Regarding criticality, Westhofen et al. [7], Wang et al. [8] provide a comprehensive review of 72

surrogate safety measures that aim to measure safety without the presence of safety-related 73

events like collisions. For scenario complexity, Liu et al. [9] provide a detailed overview of 74

metrics aimed at quantifying environmental, behavioural, and perceptual complexity in 75

driving scenarios. Finally, the literature on coverage-based testing (e.g., structural coverage, 76

requirements coverage, and parameter space exploration) is well-established, particularly 77

in software and systems testing, e.g., see [10]. However, overviews on coverage metrics 78

1 https://ccam-sunrise-project.eu/

https://ccam-sunrise-project.eu/
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Table 1. Overview of different types of metrics for scenarios. In case of multiple definitions, these are
separated by a semicolon.

Name Definition in the context of ADS safety assessment Relevant
references

Completeness The extent to which a scenario description contains all
the information necessary for meaningful analysis and
decision-making

[6,11,12]

Criticality Quantification of the potential risks and challenges in a
scenario

[7,13–28]

Coverage The adequacy of a testin effort; the extent to which a set
of scenarios addresses a given ODD

[2,12,29–
40]

Diversity or
dissimilarity

Quantification of how different two scenarios are from
each other; spread across a scenario set

[41–50]

Exposure The likelihood of encountering a scenario [51–61]
Complexity The degree of challenge a scenario presents to a human

driver or an ADS
[9,62–72]

related to driving scenarios with respect to an ADS’ Operational Design Domain (ODD) 79

are limited. 80

Despite the value of these works, there remain important gaps in the literature. Most 81

notably, few surveys take a scenario-centric view when reviewing different types of metrics, 82

such as completeness, criticality, and coverage, within the context of assessing the per- 83

formance of ADSs against their ODDs. Moreover, there is limited guidance on how such 84

metrics can be mapped to different stages of scenario-based assessment, such as scenario 85

generation, test case allocation, and In-Service Monitoring and Reporting (ISMR). This arti- 86

cle aims to address these gaps by providing a structured overview of scenario-based metrics 87

specifically tailored to ADS safety assessment (Section 3). Moreover, we will highlight the 88

role of these metrics within the SUNRISE SAF (Section 4). 89

3. Metrics 90

This section presents relevant metrics for scenarios that can be utilized when using 91

scenarios within the SAF. While this section focuses on the metrics themselves, Section 4 92

will explain how the metrics can be used for the SAF. The metrics are grouped into six 93

different types of metrics: scenario completeness (Section 3.1), scenario criticality (Sec- 94

tion 3.2), scenario coverage (Section 3.3), scenario diversity and dissimilarity (Section 3.4), 95

scenario exposure (Section 3.5), and scenario complexity (Section 3.6). For each of these 96

six different types of metrics, relevant metrics from the literature are briefly discussed. 97

Table 1 provides an overview of these six different types of metrics. In addition to these 98

metrics, Section 3.7 presents other relevant types of metrics such as realism, rarity, and 99

representativeness. These other types of metrics are not included in the list above either 100

due to limited treatment in the existing literature or because they closely overlap with 101

the six aforementioned metric types. These additional metrics are briefly introduced and 102

discussed in relation to the six main metric types. 103

3.1. Scenario completeness 104

Many agree on the importance of completeness but a commonly-agreed definition 105

of completeness does not exist [6]. In [6], a list of various definitions of completeness 106

is presented. In general, completeness refers to the state or degree of having all the 107

necessary or appropriate parts. In the context of scenario-based safety assessment of 108

ADSs, completeness indicates the extent to which a scenario description contains all the 109

information necessary for meaningful analysis and decision-making. A complete scenario 110
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is one that is free from missing or ambiguous data, and which specifies all relevant aspects 111

— such as actor behaviours, environmental conditions, and timing relations — required to 112

simulate or evaluate the scenario accurately. 113

While completeness is often discussed alongside coverage, the two concepts serve 114

distinct roles. Coverage, which will be more extensively discussed in Section 3.3 pertains 115

to the breadth of scenarios — how well they span the ODD and the range of conditions 116

under which the system is expected to operate. Completeness, on the other hand, is about 117

depth — ensuring that each individual scenario is sufficiently specified. For example, a 118

scenario might be incomplete if it lacks details such as vehicle velocities, road geometries, 119

or environmental factors like lighting and weather. High coverage ensures that all relevant 120

types of situations are represented, but without completeness, those scenarios may be 121

unusable for simulation, testing, or validation. Thus, completeness is essential for enabling 122

confident assertions about system behaviour under specific conditions. 123

According to [11], several approaches mentioned in the literature aim to achieve a 124

higher completeness in the context of safety assessment of ADSs but Glasmacher et al. [11] 125

are the first to provide an argumentation for completeness. More specifically, they provide 126

an argumentation for the state of completeness — which they regard binary — of the so- 127

called scenario concept, where scenario concept refers to a set of scenario categories, their 128

definitions, and the relations between scenario categories. They define completeness for a 129

use case “if all relevant driving situations are adequately captured”, which is considered 130

to be a binary state, i.e., completeness is either reached or it is not. It should be noted 131

that completeness thus depends on the use case. Also, it is not further elaborated what 132

“adequately” mean. 133

In [12], the authors propose two different types of completeness that focus on concrete 134

scenarios rather than the scenario concept. Since their use case is the development of a 135

scenario database based on real-world data, the two different types of completeness focus 136

on different aspects of this process. The first type of completeness addresses the question 137

of whether “the driving data contain all relevant details of an ODD”. The second type 138

addresses the question of whether “the collected scenarios describe all relevant details that 139

are in the driving data”. Due to the word “relevant”, the degree of completeness depends 140

on what is considered to be relevant, which depends on the actual use case. For example, 141

if a system’s response depends on the colour of the vehicle in front, the vehicle’s colour 142

is considered relevant and must be described in order to reach completeness. Conversely, 143

if another system’s response does not depend on the vehicle’s colour, there is no need 144

to describe this to reach completeness. In [12], providing a quantitative measure for 145

completeness is left as future work. 146

One aspect of the completeness of a scenario description is the adherence to a specified 147

format. For example, in the context of scenario description for virtual simulations, one of 148

the most commonly utilized is format is ASAM OpenSCENARIO XML [73]. Because a file 149

specification exists, it is possible to ascertain whether a given scenario description adheres 150

to the prescribed specification. Note that this does not imply that the content of the scenario 151

description is sensible or complete. For example, it is straightforward to describe a scenario 152

with two vehicles driving through each other or to simply leave out some important details 153

while still adhering to the specified format. To check for such issues, a visual inspection can 154

be done with a visualization tool of the scenario description. For ASAM OpenSCENARIO 155

XML, Esmini 2 could be used for that purpose. 156

In summary, completeness of scenarios entails the degree of which all necessary 157

information is contained in the scenario. This definition can be applied to concrete scenarios 158

2 https://esmini.github.io/

https://esmini.github.io/
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[12] as well as to a more abstract scenario concept [11]. As a start towards completeness 159

measures, tools have been developed to check whether a scenario description contains the 160

necessary information to be executable in a simulation environment. 161

3.2. Scenario criticality 162

Criticality metrics are fundamental in evaluating and ensuring the safety and reliability 163

of ADSs. These metrics quantify the potential risks and challenges in various traffic 164

scenarios, offering a framework for assessing and mitigating hazards. There exist two high- 165

level approaches in assessing criticality of a scenario. The first approach (scenario based) is 166

based on attributes and characteristics of the scenario itself as well as the agents involved 167

and can be assessed before the scenario is executed, i.e., final trajectories may not all be 168

known. The second approach (test case outcome based) is based on the assessment of the 169

scenario outcome as a test scenario — including a given SUT — and is mainly considering 170

the final trajectories of all agents involved upon execution. This means that a scenario 171

characterized as critical upon execution is tightly connected to a specific SUT. 172

In the ISO 34502 standard [13, Annexes A to D], scenario criticality is approached by 173

decomposing the scenario space into three sub-classes corresponding to the three main 174

ADS functions, namely perception, planning, and control, in accordance with the physics 175

of the ADS. It is there argued that, if risk factors and their corresponding potentially critical 176

scenarios (scenarios including one or more risk factors) are decomposed and logically 177

structured in accordance with the physics of the ADS, then it is possible to provide a 178

holistic coverage of all the reasonably foreseeable safety-relevant root causes for a given 179

Dynamic Driving Task (DDT). This motivates the specific recommendations for perception, 180

traffic, and vehicle-control-related risk factors, and the corresponding scenario structures 181

elaborated in detail in Annex B, Annex C, and Annex D respectively, of the ISO 34502 182

standard [13]. 183

As previously discussed in Section 2, a comprehensive list of criticality metrics is 184

provided in [7]. Therefore, this only briefly outlines the five categories of criticality metrics 185

proposed by Cai et al. [14], and refer the reader to[7] for a more thorough overview. The 186

five categories are as follows: 187

• Trajectory-based. These metrics calculate the spatial or temporal gaps between traffic 188

participants based on their trajectories or positions within a scene. Examples include 189

Time Headway (THW) [15], gap time, distance headway, Time-to-Collision (TTC) [16], 190

worst TTC [17], time to closest encounter [18], time exposed TTC [19], time integrated 191

TTC [19], time to zebra [20], and post encroachment time [21]. These metrics are crucial 192

for scenarios where the precise movement and interaction of vehicles are central to 193

assessing risk. 194

• Maneuver-based. These metrics measure the difficulty of avoiding an accident through 195

specific maneuvers such as braking and steering. For braking, key metrics include time 196

to brake, deceleration to safety time, brake threat number [22], required longitudinal 197

acceleration, and longitudinal jerk. For steering, important metrics include time to 198

steer, steer threat number [22], required lateral acceleration, required longitudinal 199

acceleration, and lateral jerk. These metrics are essential for evaluating the immediate 200

actions required to prevent collisions. 201

• Energy-based. These metrics assess the severity of a crash. For example, Yue et al. 202

[23] used the kinematic energy of the ego vehicle to compute the scenario risk index. 203

These metrics are critical for understanding the potential impact and damage severity 204

in crash scenarios. 205

• Uncertainty-based. These metrics capture the uncertainties inherent in traffic scenar- 206

ios. The level of uncertainty in a scenario generally correlates with the number of 207



Version July 31, 2025 submitted to Vehicles 6 of 22

challenges faced by the SUT. Examples include the pedestrian risk index by Cafiso 208

et al. [24] which quantifies the temporal variation of estimated collision speed between 209

a vehicle and a pedestrian, and the crash potential index [25], which estimates the 210

average crash possibility if the required deceleration exceeds the maximal available 211

deceleration. Schreier et al. [26] utilized Monte-Carlo simulations to estimate behav- 212

ioral uncertainties of traffic participants with the time-to-critical-collision-probability. 213

These metrics are pivotal for scenarios with high variability and unpredictability. 214

• Combination-based. These metrics integrate several criticality metrics, addressing 215

different aspects of a scenario to provide a more comprehensive assessment. Huber 216

et al. [27] presented a multidimensional criticality analysis combining various metrics 217

to evaluate overall scenario criticality. Baumann et al. [28] proposed a combination- 218

based metric that includes longitudinal acceleration, THW, and TTC. These metrics 219

offer a holistic view but require careful consideration of the weights assigned to 220

different components. 221

The diverse approaches to criticality metrics underscore the complexity and multi- 222

faceted nature of traffic scenarios. Each class of metrics addresses specific aspects of risk, 223

yet no single metric can be universally applied to all scenarios. Appropriate criticality 224

metrics need to be tailored to the specific conditions of different scenarios, as a general and 225

objective criticality metric for all scenarios does not yet exist. 226

3.3. Scenario coverage 227

Coverage generally refers to the degree to which something deals with something 228

else. In the field of software engineering, coverage is a measure of the verification progress 229

[29]. Since there are multiple ways to measure (the degree of) verification completeness, 230

Piziali [29] argues that there is no single (best) way to define coverage. For example, in the 231

application of software engineering, coverage can be related to the fraction of functional 232

requirements that have been addressed (functional coverage), the fraction of the code that 233

has been executed during the verification (code coverage), and the fraction of assertions 234

that has bee evaluated (assertion coverage). For the different types of coverage, multiple 235

measures can be considered. For instance, code coverage can be measured in terms of the 236

lines of codes that have been executed, the branches that are covered, etc. 237

In [30], the authors highlight the importance of coverage metrics in testing autonomous 238

vehicles. They argue that inadequate coverage of potential situations an autonomous 239

vehicle might encounter is similar to insufficient testing. To address this, Alexander et al. 240

[30] propose a “situation coverage metric”. They suggest that this metric should be tractable, 241

meaning: 242

• Calculable percentage: The metric should be expressible as a percentage. Metrics like 243

the number of kilometers driven or the number of (simulated) scenarios are inadequate 244

because they can be infinite. Similarly, the number of failures found is not useful since 245

the total number of possible failures is unknown. 246

• Coverage of 100 % achievable: The metric should allow for 100 % coverage to be 247

realistically achievable under practical conditions. 248

In the context of testing ADSs, “coverage” is frequently used to assess the adequacy of 249

a testing effort and to determine when testing can be concluded [31]. Riedmaier et al. [2] 250

described “scenario coverage” as the extent to which the concrete scenarios used for testing 251

encompass the entire scenario space, though they did not provide specific quantitative 252

measures. Traditional metrics, such as requirement and code coverage [29], are also relevant 253

for ADSs. Additionally, specific coverage metrics have been developed for Automated 254

Driving (AD). This section will highlight several of these metrics, which can be categorized 255

based on the two aforementioned properties identified by Alexander et al. [30]: metrics 256
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that cannot be expressed as a percentage, metrics that can be expressed as a percentage but 257

for which 100 % is not realistic, and metrics that can be expressed as a percentage for which 258

100 % is achievable. 259

In [32], a measure for the uncertainty of an estimated Probability Density Function 260

(PDF) is used to measure the degree of completeness of the acquired data. The used 261

measure ranges from zero to infinite, so it cannot be expressed as a percentage. Zero is 262

only reached in case infinite data is used to estimated the PDF. In [33], two measures are 263

proposed for measuring the “saturation effect” in recorded data. For the maneuver layer, 264

the Kullback-Leibler divergence between the PDF estimated with all data and the PDF 265

estimated with less data is used. This provides a number ranging from zero to infinite, with 266

zero if and only if the two PDFs are equal. For the behavior layer, the number of unique 267

maneuver sequences are used. The idea is that this number should reach an asymptote. 268

However, because this asymptote is unknown, this number cannot be expressed as a 269

percentage. Because the metrics in [32,33] cannot be expressed as percentages, it is difficult 270

to determine a threshold for which the data can be regarded as sufficient or saturated. 271

Glasmacher et al. [34] proposed a coverage metric based on the values of the scenario 272

parameters. In their approach, each scenario is represented by an ellipsoid in a parameter 273

space. The total covered space is represented by the union of all ellipsoids. The degree of 274

coverage is calculated by dividing the total covered space by the space that can potentially 275

be covered, where the latter is estimated based on the assumption that the covered space 276

as a function of the total number scenarios can be represented by a cumulative Weibull 277

distribution function. As a result, the coverage can be expressed as a percentage. However, 278

since a cumulative Weibull distribution function is assumed, a 100 % coverage is only 279

achieved if an infinite amount of data is used. 280

A number of coverage metrics from the third category, i.e., metrics that can be ex- 281

pressed as a percentage for which 100 % is realistically achievable, are presented in the 282

literature. In [35], the so-called state coverage is proposed, which is a percentage of pre- 283

defined states that have been reached during testing. Similarly, in [36], the coverage is 284

expressed as the percentage of regions that have coverage by the robot. Both these methods 285

require to determine the states or regions that must be covered during testing before the 286

actual testing takes place. 287

A framework for coverage of scenes, i.e., a description of the environment at a certain 288

point in time, is presented in [37]. Here, a method is proposed to discretize scenes such 289

that they can be enumerated. Once enumerated, the percentage of scenes covered during 290

testing can be calculated. However, the details to reproduce the metric of [37] are missing 291

an no practical results are presented, which limits the use of the presented method. 292

In [38], the coverage of an ODD is calculated by breaking the ODD down into pre- 293

defined logical scenarios. It is assumed that the predefined logical scenarios fully cover 294

the ODD. The coverage of an individual logical scenario is based on the coverage of the 295

concrete scenarios that are covered by the logical scenario. Similarly, the coverage of a 296

concrete scenario is based on the coverage of the so-called continuous parameters that 297

are part of the concrete scenarios. Note that the continuous parameters of a scenario are 298

considered individually, meaning that the coverage of [38] does not consider different 299

combinations of parameter values. 300

Also in [12], metrics for the coverage based on scenarios are proposed. Two type of 301

coverage metrics are distinguished. The first type considers the coverage of all relevant 302

aspects of an ODD. By encoding these relevant aspects using tags, e.g., following the 303

ISO 34504 standard [74], the coverage is determined by the number of scenarios containing 304

the predefined tags. The second type of coverage metrics considers the extent to which the 305

collected scenarios cover all relevant aspects that are in a data set. One metric calculates the 306
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percentage of time instants that are covered by n scenarios. A second metric computes the 307

percentage of relevant actors that are covered by the scenarios, where an actor is deemed 308

relevant based on some predefined rules. A third metric combines the other two and 309

calculates whether all actors are covered at the time instances at which these actors are 310

considered relevant. 311

Other coverage metrics related to (testing of) AD focus on the internal state of an 312

ADS. For example, in [39], the authors focused on the Deep Neural Network (DNN) of an 313

ADS. They proposed the so-called neuron coverage, which is the ratio of activated neurons 314

during all tests and the total number of neurons of the neural network(s). In [40], it is 315

assumed that an ADS computes its decisions using parameterized rule-based systems and 316

cost functions, meaning that parameters characterize the decision process. They proposed 317

the “parameter coverage”, where a scenario covers a parameter if changing the parameter’s 318

value with a certain amount leads to different simulation results. 319

3.4. Scenario diversity and dissimilarity 320

The scenario dissimilarity metric compares two scenarios to identify how different 321

they are from each other. The scenario diversity metric extends the notion of dissimilarity 322

to a set of scenarios to measure the spread across the set. These metrics may be applied at 323

any scenario abstraction stage, whether functional, logical, or concrete. The metrics have 324

various applications for scenario-based testing, including: 325

• Identifying redundant scenarios, such that they can be skipped to reduce test effort. 326

• Clustering and categorization of concrete scenarios to obtain logical scenarios or 327

scenario categories. Logical scenarios / scenario categories help with understanding, 328

storage, and querying of scenarios. 329

• Promoting a diverse set of scenarios when using scenario generation methods such as 330

optimization. 331

Existing dissimilarity metrics for scenarios can be broadly classified in three categories: 332

1. Dissimilarity based on scenario parameters: These metrics are applied particularly 333

to multiple concrete scenarios of the same logical scenario. As concrete scenarios are 334

obtained by sampling values for parameters of the logical scenario, dissimilarity is 335

computed by comparing parameter values of concrete scenarios. For example, Zhu 336

et al. [41] compute dissimilarity based on Euclidean distance in parameter space. 337

Alternatively, Zhong et al. [42] define dissimilarity of a (traffic violation) scenario 338

based on the percentage of scenario parameters which differ between two scenarios. 339

Here, a continuous parameter is said to differ between two scenarios when the 340

difference in the parameter value is greater than a user defined resolution. 341

2. Dissimilarity based on scenario trajectories: These metrics compute dissimilarity 342

considering complete trajectories of all actors in each scenario. For example, Ries 343

et al. [43] use dynamic time warping to estimate similarity between trajectories of 344

actors in two scenarios. Nguyen et al. [44] use Levenshtein distance to compute 345

the similarity between trajectories. The Levenshtein distances measures the number 346

of “edits” needed to convert one trajectory to another. Alternatively, Lin et al. [45] 347

create matrix profiles that consist of dissimilarities between the sub-sequences of one 348

trajectory with the nearest neighbour sub-sequences from the other trajectory. The 349

dissimilarity is based on the number of elements lower than a certain threshold. 350

3. Dissimilarity based on scenario features: These metrics define dissimilarity based on 351

features extracted based on expert knowledge or through feature extraction methods. 352

The considered features include, e.g., behaviour of scenario actors (e.g., average 353

occupancy around the ego vehicle) and ODD features (e.g., road layout orientation). 354

Kerber et al. [46] compute average occupancy of an 8-cell grid around the ego vehicle 355
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over the entire scenario and use it as a dissimilarity measure to compare scenarios. 356

Kruber et al. [47] perform unsupervised random forest clustering based on road 357

infrastructure and trajectory features and use hierarchical clustering to estimate a 358

similarity measure. Alternatively, in [44,48], feature maps are computed based on 359

similar features, including behaviour aspects such as steering angle standard deviation. 360

A different approach is presented by Wheeler and Kochenderfer [49], who cluster 361

scenarios based only on features from the critical segment of a scenario. The critical 362

segment is determined based on a risk threshold. Behaviour features such as relative 363

speeds, acceleration change, and attentiveness are considered. 364

Computing dissimilarity based on scenario parameters is straightforward and efficient, 365

with low computational load and no additional processing of scenarios. However, this 366

dissimilarity measure is independent of whether the two scenarios would pose different 367

challenges to the ego vehicle (system under test). It is not distinguished which scenario 368

parameters influence a safety-critical interaction with the ego vehicle, and how this influ- 369

ence changes in different regions of the parameter space. In contrast, dissimilarity based 370

on trajectories captures the changes in interactions of other actors with the ego vehicle. 371

However, complete trajectories are needed for computing dissimilarity, leading to increased 372

computational load. Furthermore, unnecessary information may skew the dissimilarity 373

metric, for example, trajectories of actors much earlier than the actual, safety relevant, 374

interaction with the ego vehicle. 375

The third group of methods, dissimilarity on features, benefit from the ability to em- 376

phasize relevant features of the scenario as defined by experts or by data-driven extraction. 377

Features extend beyond trajectories to consider the ODD and other behavioural aspects. In 378

addition, specific segments of scenarios may be considered, for example, the part of the 379

scenario after a criticality threshold for the ego vehicle is exceeded. Thus, the dissimilarity 380

measure includes the notion of safety-relevance and can be fine tuned based on a given use 381

case. Depending on the chosen features, it may be necessary to perform testing to obtain 382

the features, for example acceleration change during critical segment as in [49]. 383

The diversity of a scenario set is established by extending the dissimilarity measure 384

to the entire data set, providing a measure to quantify average dissimilarity and spread. 385

The research on diversity metrics for scenario-based testing is still limited. Tian et al. 386

[50] measure average dissimilarity of a new scenario from an existing set. The average 387

dissimilarity is used as an indicator of increase in diversity due to the scenario. Alternatively, 388

Zohdinasab et al. [48] map scenarios to certain cells within a feature map based on feature 389

values. Then, they measure diversity using a sparseness measure, defined as the average 390

maximum Manhattan distance between the occupied cells in the feature map. 391

3.5. Scenario exposure 392

Scenario exposure metrics are related to frequency, time spent, or distance travelled in 393

a specific driving scenario in the real-world. These metrics encompass aspects such as the 394

scenario probability of specific scenarios, the uncertainty associated with this probability, 395

and the ability to predict and prepare for future scenarios. In practice, the scenario exposure 396

is typically expressed using the scenario probability, which itself is commonly estimated. 397

It can be useful to also consider the uncertainty of the estimation. Hence, the scenario 398

probability uncertainty is also considered. 399

As part of the exposure, this section also contains a description of existing metrics 400

for scenario foreseeability. This notion is mentioned in the United Nations Regulation 401

157 (UN R157), which requires that the ADS avoids any collisions that are reasonably 402

foreseeable and preventable. Thus, it is required to determine all scenarios that are reason- 403

ably foreseeable. 404
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3.5.1. Scenario probability 405

Several methodologies have been developed to estimate scenario exposure using 406

Naturalistic Driving Data (NDD) and Field Operational Test (FOT) data, each with its own 407

advantages and limitations. For the scenario exposure, typically a distinction is made 408

between a “type of scenarios”, such as an “abstract scenario” [75] and a “scenario category” 409

[76], and the parameter values within such a “type of scenario”. For the first, an expectation 410

of the number of encounters of such a situation can be determined, e.g., the expected 411

number of individual scenarios belonging to a certain type of scenario within one hour 412

of driving or within a certain predefined distance. For the latter, such an expectation 413

is typically meaningless because the probability of encountering a certain scenario with 414

particular parameter values is zero. In that case, it is more useful to consider the probability 415

density of the scenario parameters. 416

In the ISO 26262 standard, the exposure of being in a certain operational situation is 417

qualitatively defined. The highest exposure (E4) is used if the situation is almost certain 418

to happen during a single drive. E3, E2, and E1 are used for medium probability, low 419

probability, and very low probability, respectively, where each class differs in one order of 420

magnitude. The exposure classification E0 is used to indicate that a situation is considered 421

incredible. 422

Expressing the exposure qualitatively supports further analysis of risks but a — pos- 423

sibly more precise — quantitative expression of the exposure provides more possibilities 424

for further analysis. Regarding the exposure of different types of scenarios, de Gelder 425

et al. [51] have expressed the exposure as the expected number of encounters per unit 426

of time for scenarios within a specific scenario category. Their work relies on real-world 427

driving data, such as the data set from Paardekooper et al. [77], which includes 6000 km 428

of public-road driving. This data-driven approach provides a robust basis for estimating 429

exposure frequencies and identifying critical scenarios. 430

Hakkert et al. [52] have defined exposure within the context of road safety, focusing 431

on various measures such as the number of kilometres travelled, time spent in traffic, and 432

traffic volumes at intersections. These measures offer a practical way to quantify exposure 433

but often require extensive and high-quality data, which can be challenging and expensive 434

to collect. 435

Regarding the exposure at parameter value level, this comes down to either assuming 436

a particular PDF or estimating a PDF based on some observations. Methods to estimatea 437

PDF can be divided into two groups: parametric density estimation and non-parametric 438

density estimation. With parametric density estimation, a particular shape of the PDF 439

is assumed and the corresponding parameters are estimated based on the data, e.g., by 440

maximizing the likelihood of the samples. In the domain of scenario-based assessment for 441

AD, Gietelink [53] has assumed a Gaussian distribution of the scenario parameters With 442

the increase of data, more sophisticated (but data-hungry) methods could be employed 443

when estimating the probability densities, such as kernel density estimation [51,54]. These 444

methods, however, generally scale badly with increasing number of parameters, which is 445

why it is not uncommon to assume that the parameters are independent, see, e.g., [55]. 446

3.5.2. Scenario probability uncertainty 447

Despite the importance of the uncertainty of estimated probabilities, this has not been 448

discussed often in the literature in relation to scenario exposure. However, outside the field 449

of automated driving, extensive literature is available on this topic. Here, two different 450

approaches can be distinguished: 451

• With the first approach, a parametric distribution is used to estimate the PDF, such 452

as a normal or Gaussian distribution, or a gamma distribution. In those cases, the 453
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distribution parameters (not to be confused with the scenario parameters for which the 454

PDF is estimated) are typically fitted to some data. When using a Bayesian approach 455

to fit those distribution parameters, the posterior uncertainty of the distribution 456

parameters can be used to estimate the uncertainty of the density [56]. 457

• With the second approach, a non-parametric distribution is used to estimate the PDF, 458

such as Kernel Density Estimation (KDE). In those cases, the uncertainty is either 459

based on a theoretical model or bootstrapping is used [57]. In the domain of AD, 460

bootstrapping is used in [32,54] to estimate the probability uncertainty of the scenario 461

parameters’ probability density. 462

3.5.3. Scenario foreseeability 463

Regulations for the type-approval of ADSs require that the activated system does not 464

cause any collisions that are reasonably foreseeable [58]. To determine what scenarios are 465

considered to be “reasonably foreseeable”, one can look at the PDF of the parameters and 466

consider the parameter values at the “edges” to be not reasonably foreseeable. Nakamura 467

et al. [59] exploited this idea to determine the “reasonably foreseeable” range of parameter 468

values. Their approach assumes scenario parameters are independently distributed accord- 469

ing to the Beta distribution. From this, a parameter range capturing 99 % of the distribution 470

is calculated and all these parameter values are considered to be reasonably foreseeable. 471

This analysis is applied in [59] to cut-in scenarios. In an extension, a similar analysis is 472

performed for cut-out scenarios in [60]. 473

This approach is expanded in [61], where two alternative methods are proposed to 474

estimate “reasonably foreseeable” parameter values. Their first method employs non- 475

parametric KDE, allowing the PDF to adapt to the data without assuming parameter inde- 476

pendence. Their second approach utilizes extreme value theory, applying the generalized 477

Pareto distribution to model extreme parameter values. These methods are demonstrated 478

through case studies involving scenarios from [59] and an additional scenario where the 479

ego vehicle approaches a slower vehicle. 480

3.6. Scenario complexity 481

In the literature, there is no universally accepted definition or metric, and multiple 482

approaches have emerged depending on the application context. In [62], the complexity of 483

a system is related to the difficulty to predict the behaviour, while Issler et al. [63] define 484

scenario complexity as the randomness of the scenario. More generally, scenario complexity 485

is typically understood as the degree of challenge a scenario presents to a human driver 486

or an ADS, often influenced by more than one factor, such as the number of elements and 487

dynamic actors, the variety of the elements and actors, the behaviour of the actors, and the 488

relation between the elements and actors [64]. 489

Research focusing on the challenge a scenario presents to a human driver typically 490

express scenario complexity using the estimated complexity of the task of the human driver 491

to deal with a certain traffic situation. For example, in [65], scenario complexity is based on 492

the following three factors: 493

• the complexity of the task, i.e., the number of acts that the driver need to perform; 494

• the number of possible ways the task can be performed, meaning that the driver need 495

to take more decisions if there are more ways to perform a task; and 496

• the number of external stimuli. 497

In [65], these three factors are combined by taking the sum of the first two factors and 498

multiplying this with the third factor, leading to a single number that quantifies the scenario 499

complexity. Other examples of measures for scenario complexity related to human drivers 500
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are presented in [66], which bases the complexity on the richness of the driving environment, 501

and [67], which bases traffic complexity on the traffic density. 502

Given that the complexity of a scenario is often based on several factors, there are 503

two main approaches used in the literature to combine the different factors. The first 504

approach is using a trained model. For example, in [68], scenarios are labelled based on the 505

perceived complexity and a model is trained using random forest, such that the model can 506

predict the perceived complexity of a scenario. For the features that are used by the model 507

to predict the scenario complexity, Liu and Hansen [68] use environmental information 508

extracted from OpenStreetMap, surrounding vehicle information derived from video, and 509

prior environmental knowledge such as weather, time, and driving location. The second 510

approach is by taking the weighted sum of the different factors [9,69,70]. In [9], scenario 511

complexity is determined by combining factors related to the environment (weather, illumi- 512

nation, daytime or night-time), road (obstacles, road condition), and dynamic entities (type, 513

occlusion level). This approach offers a highly flexible metric although determining the 514

appropriate weights may not be straightforward. 515

For expressing the challenge of a scenario for an ADS, several works address the com- 516

plexity of the dynamic part. An increasingly prominent approach is based on information 517

theory and machine learning. For example, in [71], information entropy is used to express 518

the uncertainties of all dynamic entities, which is used to express the scenario complexity. 519

Based on this, in [63], a framework is proposed that leverages entropy-based metrics to 520

quantify the unpredictability and variability of surrounding agent behaviour, directly link- 521

ing scenario complexity to the decision-making challenge for an ADS. In [64,72], a three 522

step approach is used to determine the complexity of the dynamic part. First, vehicles 523

are selected that are part of the so-called dynamic influencing area of the ADS. Second, 524

a vehicle-pair complexity is computed based on the encounter angle, relative velocity, 525

and relative distance. Third, a single quantity is obtained by integrating the vehicle-pair 526

complexities over all pairs and after applying some form of smoothing. This approach has 527

been shown to be consistent with complexity ratings of human drivers [64]. 528

3.7. Other metrics 529

This section briefly discusses other types of metrics. The relation with metrics dis- 530

cussed above will be highlighted. 531

3.7.1. Realism 532

Since the use of virtual simulations is inevitable for the assessment of (high-level) 533

ADSs, the development of high-fidelity simulations has received considerable attention. 534

Many efforts have been put into reducing the so-called sim2real gap as the extent of the 535

sim2real gap can have a large influence on the evaluations of ADSs [78]. The quantification 536

of the real2sim gap typically focuses on the gap between the model of the SUT [79,80], 537

the gap between data generated by sensors [81,82], and the gap between the resulting 538

behaviour of an SUT [83,84]. These aspects of the real2sim gap goes beyond the scenario 539

descriptions themselves, which is why this work does not provide a further review on 540

metrics addressing these aspects. Another contributor to the sim2real gap is the limited 541

description of a scenario compared to the details in the real world. For example, even 542

though background in a camera image can be influenced by the colour of the surrounding 543

buildings, not all of these colours may not be described as part of a scenario. Following 544

[12], this contributor to the sim2real gap is addressed by scenario completeness metrics 545

(Section 3.1). 546
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3.7.2. Rarity/novelty 547

The rarity of a scenario can be expressed using metrics related to the scenario exposure 548

(Section 3.5). Although there is no clear definition of “novelty”, one might argue that a 549

“novel scenario” should be both rare and distinct from already known scenarios. Therefore, 550

in addition to scenario exposure metrics, scenario diversity and dissimilarity metrics 551

(Section 3.4) could be utilized to express the novelty. 552

3.7.3. Reproducibility 553

Reproducibility is a critical aspect of scenario-based testing for ADSs. Achieving repro- 554

ducibility requires that scenarios are described in such a way that they minimize ambiguity 555

and interpretation errors. Completeness metrics (Section 3.1) help to assess whether all 556

necessary parameters, constraints, and contextual elements (e.g., actor behaviours, road 557

geometry, weather conditions) are explicitly defined, minimizing ambiguity and interpre- 558

tation errors. Variations in scenario execution may also arise due to stochastic elements. 559

Dissimilarity metrics (Section 3.4) can be used to quantify differences between multiple 560

executions of what is nominally the same scenario. 561

3.7.4. Outcome severity 562

Outcome severity metrics quantify the consequences of a scenario, such as the impact 563

speed in the event of a collision and the likelihood of a resulting injury or damage. These 564

metrics often overlap with scenario criticality metrics (Section 3.2) but they measure dif- 565

ferent aspects of risk: scenario criticality metrics focus on the urgency of a conflict (e.g., 566

using TTC) whereas outcome severity metrics address the impact if such a conflict is not 567

avoided. Outcome severity metrics are more related to the SUT whereas severity metrics 568

are typically related to a scenario, which is why this paper put more emphasis on the latter. 569

3.7.5. Traceability 570

Traceability refers to the ability to track the origin and any changes of each scenario. 571

In the context of ADS assessment, traceability plays a critical role in ensuring transparency, 572

consistency, and accountability. Traceability could help with quantifying other metrics. For 573

example, it may allow for reasoning of the ODD in which a certain scenario is encountered, 574

thereby helping to quantify coverage (Section 3.3) of an ODD as well as estimating the 575

exposure (Section 3.5) if the scenario within an ODD. Typically, aspects of traceability are 576

not quantified, which is why this work does not further elaborate on this topic. Instead, 577

traceability is typically supported by qualitative attributes, structured metadata, and 578

auditability criteria. 579

3.7.6. Representativeness 580

Scenario representativeness refers to how well a given scenario or a set of scenarios 581

reflects the conditions and situations the ADS is expected to encounter in its ODD. When 582

referring to a set of scenarios, representativeness refers to the extent to which the (relevant) 583

characteristics of the scenarios reflect the characteristics of scenarios within a specific ODD. 584

In [85], a “scenario representativeness metric” is proposed that compares a set of generated 585

scenarios with a set of observed scenarios. They do this by measuring the discrepancy of 586

the parameter distributions using the Wasserstein metric of the two different scenario sets. 587

When referring to a single scenario, a representative scenario is one that is realistic, 588

relevant, and frequent enough to support meaningful conclusions about the system’s 589

safety and performance in its intended use. To the best of our knowledge, no existing 590

literature in the field of automated driving explicitly defined a metric under the term 591

“representativeness” for single scenarios. A reason for this could be that it is closely linked 592
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Figure 1. Safety Assurance Framework workflow including an overview of where the different types
of metrics can contribute to the SAF.

with the scenario exposure: scenarios that are highly unrealistic and/or infrequent are 593

inherently associated with low scenario exposure (Section 3.5) values. 594

4. Metrics for the Safety Assurance Framework 595

The Cooperative, Connected, and Automated Mobility (CCAM) Safety Assurance 596

Framework is the main deliverable of the SUNRISE project. The SAF is designed to 597

accelerate the safe deployment of ADSs3. It aims to create demonstrable positive impact 598

towards safety. 599

The SAF is schematically shown in Figure 1. This figure also indicates where the 600

different types of metrics can contribute to the SAF. The SAF is based on the NATM 601

document from United Nations’ world forum for harmonization of vehicle regulations [5]. 602

The input of the SAF are the ODD, requirements related to the system behaviour, external 603

requirements, and test objectives. Next to the input, there are five main components that 604

can be distinguished: 605

1. Scenario: creates, formats, and stores (test) scenarios in databases; 606

2. Execute: converts scenarios into concrete test cases and runs them on various testing; 607

3. Safety Argument: evaluates test results, coverage, and overall system safety that leads 608

to a decision on a pass or fail; 609

4. In-Service Monitoring and Reporting (ISMR): monitors the system during deployment, 610

ensuring continual safety and providing input to future system designs; 611

5. Audit: ensures proper safety processes throughout the development lifecycle. 612

The following five subsections will provide more details on these five main components as 613

well as how the metrics of Section 3 can contribute to the SAF components. 614

4.1. SAF component — Scenario 615

The Scenario component consists of three parts: Create, Format, and Store. Multiple 616

approaches are possible and even desired for complementary reasons. Multiple SCenario 617

3 To be more precise, the SAF targets CCAM systems. In this work, we refer to ADSs as the core component of
broader CCAM systems, which also include vehicle connectivity and cooperative functions.



Version July 31, 2025 submitted to Vehicles 15 of 22

DataBases (SCDBs) result from this process and through the SUNRISE data framework 618

that accesses these SCDBs, users of the SAF can obtain scenarios from various sources. 619

The first part of the Scenario component (Create) concerns the generation of scenarios, 620

e.g., using data-driven or knowledge-driven approaches. A data-driven approach could be 621

to extract scenarios from real-world driving data such as methodologies like StreetWise [3]. 622

Scenarios may also be created on the basis of system requirements, where the scenarios 623

are intended to verify the conformance to the requirements. Note that at this stage, the 624

scenario dissimilarity metrics might be useful for the creation of scenarios. These metrics 625

could identify redundant or near-duplicate scenarios, such that they can be skipped to 626

reduce test effort and optimize databases. 627

The second part (Format) involves the formatting of the scenarios such that these can 628

be stored into a SCDB. Describing the scenarios into a computer-readable format facilitates 629

easy access, interpretation, and integration of the scenario data across different systems and 630

tools. When dealing with test scenarios, a common format is the ASAM OpenSCENARIO 631

XML [73]. For describing scenarios observed in real-world driving data, a structured format 632

for traffic recordings [86] or a format based on an object-oriented framework [76] might be 633

used. At this stage, it can already be checked whether the formatted scenarios contain all 634

relevant data, which is why completeness metrics can be applied at this stage. 635

After scenarios are created and formatted, the next step is to (Store) them in a SCDB. 636

The implementation of the storage is up to the SCDB owner but requirements are set out 637

regarding the interface of the SCDB with the subsequent components through the SUNRISE 638

data framework. Although all metrics could be part of the metadata of scenarios and stored 639

as such in the SCDBs, there is no direct use of these metrics for the storage itself. 802056 640

4.2. SAF component — Execute 641

The Environment component uses scenarios from the different SCDBs that are retrieved 642

through the SUNRISE data framework together with the overall SAF input to create test 643

cases that are executed in an allocated test environment. This component consists of three 644

parts: Query and Concretise, Allocate, and Execute. 645

The Query and Concretise part is responsible for querying scenarios from the SCDB and 646

defining concrete test scenarios. Together with the test objectives and pass/fail criteria, 647

test cases are formulated. For the purpose of defining the test scenarios, many different 648

approaches can be used [87]. For the different approach, different metrics could be utilized. 649

One approach is to focus the test effort on the more critical or complex scenarios, thus the 650

scenario criticality and scenario complexity metrics could be used. In addition, it is typically 651

desired to use test scenarios that are representative of the ODD, and scenario exposure 652

metrics could be of use to define whether scenarios are representative. Furthermore, the 653

test scenarios should cover the ODD, which is why coverage metrics are also relevant for 654

this part. 655

The the next step, Allocate, test cases are assigned to appropriate testing environments, 656

such as hardware-in-the-loop, proving grounds, or virtual simulation [88]. Each environ- 657

ment requires different levels of scenario detail and fidelity. Completeness metrics, which 658

indicate whether a scenario contains all necessary and relevant information (for a specific 659

testing environment), can guide this allocation process. Additionally, scenario criticality 660

may influence the choice of environment: for example, a scenario with a high criticality 661

score might be better suited for execution in a controlled or safe environment, such as a 662

virtual simulation, to minimize risk during testing. Lastly, scenario complexity can be 663

an important factor in choosing the testing environments. For instance, highly complex 664

scenarios may not be feasible in all testing environments. 665
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In the Execute step, the selected scenarios are run in their designated testing envi- 666

ronments, and the performance of the ADS is systematically evaluated. This involves 667

monitoring key outputs, such as safety margins, rule compliance, and system responses. 668

Scenario criticality metrics can play a valuable role in interpreting the test outcomes by pro- 669

viding context for how challenging or safety-relevant a scenario is. For example, an ADS’s 670

behaviour in high-criticality scenarios may warrant closer scrutiny, as these situations often 671

represent edge cases or conditions with a high potential for failure. 672

4.3. SAF component — Safety Argument 673

The Safety Argument component evaluates an ADS’s safety through four stages: Cover- 674

age, Test Evaluation, Safety Case, and Decide. This component uses the test results together 675

with the input, such as the ODD, behavioural requirements, and external requirements, to 676

determine whether the system meets the overall safety assurance goals. There is a feedback 677

loop through the Query and Concretise part in case additional tests are required to make a 678

well-informed decision. 679

The Coverage analysis provides quantitative assessments of the extent to which the 680

scenario set addresses relevant operational conditions. Therefore, the coverage metrics can 681

be directly used for this. In addition, metrics related to dissimilarity of scenarios support 682

the evaluation of scenario set diversity, ensuring that the testing scenarios are diverse. 683

The Test Evaluate part assesses each test execution to determine whether the system 684

has passed or failed and whether the test has been executed well. This part mainly uses 685

the information provided from the test cases and the test objectives, so no further scenario 686

metrics are directly involved. 687

The Safety Case compiles structured, evidence-based arguments to demonstrate that 688

an ADS meets (legal) safety standards and is ready for deployment. Coverage metrics 689

help to justify that the system has been validated across all relevant operational contexts. 690

Exposure metrics can serve as weighting factors in the safety argumentation, enhancing 691

the credibility of risk-based safety assessments. 692

The Decide block finalizes the safety assurance process by integrating results from ear- 693

lier steps into a binary pass/fail decision. This part relies on inputs from prior components 694

to support a traceable and auditable outcome aligned with regulatory expectations, so no 695

further scenario metrics that are directly involved. 696

4.4. SAF component — ISMR 697

The ISMR serves multiple purposes. First, it monitors the system during deployment, 698

thereby ensuring continuous safety. To measure the continuous safety, scenario criticality 699

metrics might be used. Second, ISMR enables the continuos collection of evidence sup- 700

porting the assumptions done during the safety case. For example, assumptions on the 701

exposure of scenarios — possibly based on scenario statistics from the SCDBs — can be 702

verified during deployment. Third, new scenarios may be detected, e.g., with the use of 703

dissimilarity metrics, and may be included into the SCDBs. 704

4.5. SAF component — Audit 705

The Audit component evaluates the manufacturer’s safety management processes, 706

including how they identify, analyse, and mitigate risks throughout the development and 707

deployment of the ADS. This goes beyond just passing specific technical tests; the Audit 708

ensures that the manufacturer adopts a structured, transparent, and accountable approach 709

to safety. A key aspect of this process is the use of the SCDBs to derive test scenarios that 710

adequately cover the system’s ODD. In this context, coverage metrics can support the 711

Audit. 712
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5. Discussion 713

This article has provided a structured overview of metrics relevant to scenario-based 714

assessment of ADSs within the context of the SUNRISE SAF. While the overview of 715

the metrics in Section 3 on scenario completeness, scenario criticality, scenario coverage, 716

scenario diversity and dissimilarity, scenario exposure, and scenario complexity offer a 717

comprehensive foundation, several limitations and challenges remain. 718

First, many of the discussed metrics are inherently use-case dependent. For example, 719

scenario exposure metrics depend on the actual ODD of an ADS. Similarly, completeness 720

metrics, though conceptually transferable, must be tailored to the operational context of 721

the ADS under test. In those cases, it is not particularly useful to already add those metrics 722

as metadata to the scenarios in the SCDBs at the Store phase of the SAF. Given these 723

dependencies, it is difficult to make general statements on aspects of a particular SCDB 724

without providing some context. 725

Second, for all different types of metrics, there is generally no single, universal metric 726

that fully captures the concept. There are different aspects of each type of metric, which 727

require different metrics. For example, completeness can refer to the inclusion of all relevant 728

scenario parameters, the specification of boundary conditions, or the presence of required 729

environmental elements; each of these may require distinct measurement approaches. 730

Similarly, coverage can pertain to coverage of parameter ranges, environmental conditions 731

within the ODD, or behavioural variations of traffic participants, etc. This highlights the 732

need for multiple interpretable metrics that can be combined or adapted depending on the 733

evaluation objectives, rather than relying on a one-size-fits-all solution. 734

While metric values can provide useful insights, they often require further interpreta- 735

tion to fully understand the characteristics of a scenario set. For example, a low coverage 736

score might suggest that important scenarios are not addressed, potentially due to gaps 737

in scenario generation or selection. However, it could also reflect the absence of scenarios 738

that are unlikely or irrelevant within the defined ODD, such as rainy weather conditions 739

inside a tunnel. In such cases, additional analysis may be needed to determine whether 740

low coverage truly indicates a deficiency or simply reflects the operational reality. This 741

underscores the importance of contextualizing metric results rather than relying on absolute 742

values alone. 743

That said, metrics play a critical role in enabling iterative refinement across SAF stages. 744

For example, coverage and criticality metrics can be used to identify underrepresented or 745

safety-critical regions in the scenario space, which in turn inform new scenario instantia- 746

tions. However, managing these feedback loops effectively remains a challenge, especially 747

when metrics are applied at multiple levels of abstraction (e.g., logical vs. concrete sce- 748

narios) and across diverse testing environments (e.g., virtual simulation, proving ground, 749

hardware-in-the-loop). 750

6. Conclusions 751

This paper has provided a structured overview of scenario metrics that support 752

scenario-based safety assessment of Automated Driving System (ADS) within the Safety 753

Assurance Framework (SAF). We have identified six core categories of metrics: scenario 754

completeness, scenario coverage, scenario criticality, scenario diversity/dissimilarity, sce- 755

nario exposure, and scenario complexity. In addition, other related metrics, such as realism, 756

rarity, and representativeness, have been briefly discussed. The relevance of the six main 757

metric types to the SAF stages, such as scenario generation, scenario allocation, test execu- 758

tion, and coverage analysis, have been analysed. The presented metrics play a foundational 759

role in developing the safety case of an ADS, which ultimately enable the deployment of 760

these systems on public roads. 761
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A key insight from this work is that there is no one-size-fits-all metric for any category; 762

different facets of each concept may need to be captured using multiple, context-dependent 763

metrics. Furthermore, many metrics are interdependent or overlapping, requiring careful 764

coordination in their application to avoid redundancy or misinterpretation. In addition, 765

rather than relying on absolute values alone, it remain important to contextualize metric 766

values. As ADS assessment practices evolve, there is a need for further formalization of 767

metrics, validation through real-world data, and tooling support to integrate these metrics 768

effectively within test and validation pipelines. 769

Future research should focus on defining and validating emerging metrics, developing 770

aggregation strategies that reflect both system performance and risk, and supporting 771

regulators and developers in interpreting metric values within diverse operational and 772

regulatory contexts. By advancing the metric landscape in a structured and scenario-centric 773

way, we move closer to scalable, explainable, and robust safety assurance for ADSs. 774
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